JustToThePoint English Website Version
JustToThePoint en español
JustToThePoint in Thai

Implicit Differentiation

The real problem of humanity is the following: We have Paleolithic emotions, medieval institutions and godlike technology. And it is terrifically dangerous, and it is now approaching a point of crisis overall, Edward O. Wilson.


The derivative of a function at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. It is the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable.

Definition. A function f(x) is differentiable at a point “a” of its domain, if its domain contains an open interval containing “a”, and the limit $\lim _{h \to 0}{\frac {f(a+h)-f(a)}{h}}$ exists, f’(a) = L = $\lim _{h \to 0}{\frac {f(a+h)-f(a)}{h}}$. More formally, for every positive real number ε, there exists a positive real number δ, such that for every h satisfying 0 < |h| < δ, then |L-$\frac {f(a+h)-f(a)}{h}$|< ε.


  1. Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$.
  2. Sum Rule: $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$
  3. Product Rule: $\frac{d}{dx}(f(x) \cdot g(x)) = f’(x)g(x) + f(x)g’(x)$.
  4. Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f’(x)g(x) - f(x)g’(x)}{(g(x))^2}$
  5. Chain Rule: $\frac{d}{dx}(f(g(x))) = f’(g(x)) \cdot g’(x)$
  6. $\frac{d}{dx}(e^x) = e^x, \frac{d}{dx}(\ln(x)) = \frac{1}{x}, \frac{d}{dx}(\sin(x)) = \cos(x), \frac{d}{dx}(\cos(x)) = -\sin(x), \frac{d}{dx}(\tan(x)) = \sec^2(x), \frac{d}{dx}(\arcsin(x)) = \frac{1}{\sqrt{1 - x^2}}, \frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1 - x^2}}, \frac{d}{dx}(\arctan(x)) = \frac{1}{1 + x^2}.$

Implicit Differentiation

In mathematics, some equations in x and y do not explicitly define y as a function x and cannot be easily manipulated to solve for y in terms of x, even though such a function may exist. They are defined implicitly, meaning they are expressed as equations y = f(x) rather than explicit functions of one variable. The technique of implicit differentiation allows you to find the derivative of y with respect to x without having to solve the given equation for y.

2x +2y·y’ = 0 ⇒ 2y·y’ = -2x. y·y’ = -x ⇒ y’ = $\frac{-x}{y}$ ⇒ y’(3) = $\frac{-x}{y} = \frac{-3}{-4} = \frac{3}{4}$. Therefore, the slope of the tangent line at (3, -4) is $\frac{3}{4}$.

y2 = 1 - x2 ⇨ $y=\pm\sqrt{1-x^{2}}$ (Explicit definition). Let’s take the positive branch, $y=+\sqrt{1-x^{2}}=(1-x^{2})^{\frac{1}{2}}$

y’ = $\frac{1}{2}(1-x^{2})^{\frac{-1}{2}}(-2x) = -x(1-x^{2})^{\frac{-1}{2}}=\frac{-x}{\sqrt{1-x^{2}}}$

Or alternatively, x2 + y2 = 1 ⇨ $\frac{d}{dx}(x^{2}+y^{2}=1)~⇨~2x+2yy’=0~⇨~y’=\frac{-x}{y}.$ The implicit way does not need to take only one branch.

$\frac{d}{dx}(x^{2}+xy+y^3=0)⇒2x+y+x\frac{d}{dx}y+\frac{d}{dx}y^3=0 ⇒ 2x +y +x·\frac{d}{dy}y\frac{dy}{dx}+\frac{d}{dy}y^3\frac{dy}{dx}=0 ⇒ 2x +y +x·\frac{dy}{dx}+3y^2·\frac{dy}{dx}=0 ⇒ x·\frac{dy}{dx}+3y^2·\frac{dy}{dx}= -(2x+y) ⇒ \frac{dy}{dx} = -\frac{2x+y}{x+3y^2}$.


$\frac{d^2y}{dx} = \frac{-2x·y^2-(-x^2)(2y\frac{dy}{dx})}{(y^2)^2} = \frac{-2xy^2+2x^2y\frac{dy}{dx}}{y^4} = \frac{-2xy^2+2x^2y·\frac{-x^2}{y^2}}{y^4} = \frac{-2xy^2-\frac{2x^4}{y}}{y^4} = \frac{\frac{-2xy^3-2x^4}{y}}{y^4} = \frac{-2xy^3-2x^4}{y^5} = \frac{-2x(y^3+x^3)}{y^5}$.

y = xm/n ↔ yn = xm. Let’s apply the differential operator ddx.

$\frac{d}{dx}y^{n} = \frac{d}{dx}x^{m} = mx^{m-1}$

$\frac{d}{dx}y^{n} = (\frac{d}{dy}y^{n})\frac{dy}{dx} = ny^{n-1}\frac{dy}{dx} = mx^{m-1} ⇨ \frac{dy}{dx} = \frac{m}{n} \frac{x^{m-1}}{y^{n-1}} = \frac{m}{n} \frac{x^{m-1}}{(x^\frac{m}{n})^{n-1}} = ax^{m-1-(n-1)\frac{m}{n}}$

$m-1-(n-1)\frac{m}{n} = m -1 -m + \frac{m}{n} = \frac{m}{n} -1 $

$\frac{dy}{dx} = ax^{a-1},~ where~ a=\frac{m}{n}$

Explicit. $y^{2}=\frac{-x\pm\sqrt{x^{2}+8}}{2}, y=\pm\sqrt{\frac{-x\pm\sqrt{x^{2}+8}}{2}}$. It is not a good approach.

Implicit. 4y3y’+ y2 + 2yy’x = 0. ⇨ (4y3+2xy)y’ + y2 = 0 ⇨ y’ = $\frac{-y^{2}}{4y^{3}+2xy}$.

Inverse Functions

Implicit differentiation can help us solve inverse functions (you can find more detailed explanation and solved examples in this link).

$\frac{d}{dx}siny=1⇨~ \frac{d}{dy}siny\frac{dy}{dx}=1⇨~ cosy\frac{dy}{dx}=1$

$y’= \frac{1}{cos(y)}=~ \frac{1}{\sqrt{1-sin^{2}y}}=~ \frac{1}{\sqrt{1-x^{2}}}$

$(sin^{-1}x)’=\frac{d}{dx}sin^{-1}x=~ \frac{1}{\sqrt{1-x^{2}}}$

$\frac{d}{dx}(tany=x)⇨~ \frac{d}{dy}tany\frac{dy}{dx}=1⇨~ \frac{1}{cos^{2}y}\frac{dy}{dx}=1⇨~ y’=cos^{2}y$

$(tan^{-1}x)’=\frac{d}{dx}\tan^{-1}x=cos^{2}(y)$ [tan(y) = x ↭ $ \frac{sin(y)}{cos(y)} = x ⇒ sin(y) = x·cos(y) ⇒ (x·cos(y))^2+cos^2(y) = 1 ⇒ x^2·cos^2(y) +cos^2(y) = 1 ⇒ (x^2+1)·cos^2(y) = 1 ⇒ cosy = \frac{1}{\sqrt{1+x^{2}}}$] = $\frac{1}{1+x^{2}}$


This content is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
  1. NPTEL-NOC IITM, Introduction to Galois Theory.
  2. Algebra, Second Edition, by Michael Artin.
  3. LibreTexts, Calculus.
  4. Field and Galois Theory, by Patrick Morandi. Springer.
  5. Michael Penn, and MathMajor.
  6. Contemporary Abstract Algebra, Joseph, A. Gallian.
  7. YouTube’s Andrew Misseldine: Calculus, College Algebra and Abstract Algebra.
  8. Calculus Early Transcendentals: Differential & Multi-Variable Calculus for Social Sciences.
  9. blackpenredpen.
Bitcoin donation

JustToThePoint Copyright © 2011 - 2024 Anawim. ALL RIGHTS RESERVED. Bilingual e-books, articles, and videos to help your child and your entire family succeed, develop a healthy lifestyle, and have a lot of fun.

This website uses cookies to improve your navigation experience.
By continuing, you are consenting to our use of cookies, in accordance with our Cookies Policy and Website Terms and Conditions of use.