    # Solvable groups II.

The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge, Daniel Boorstin.

Recall that a p-group is a group of order pk where p is a prime and k ≥ 1. Burnside’s Theorem for p-Groups. The center Z(G) of any group G of order pk, with p prime is non-trivial.

Proof.

By definition, if z ∈ Z(G), then gzg-1 = z ∀ g ∈ G, so [z] is a trivial conjugacy class. Since conjugation is a group action of G on itself, and thus induces an equivalence relation on G, the conjugacy classes partition G.

The class equation for G is: $p^k = |Z(G)| + \sum_{g∈G,[g]non-trivial}|G : C_G(g)|$ where the sum of the righthand side of the equation runs over each element g with a non-trivial conjugacy class [g] = |G : CG(g)| > 1.

|G| = pk = [By Lagrange’s Theorem] |G : CG(g)| |CG(g)| ⇒ |G : CG(g)| | pk, but also |G : CG(g)| > 1 ⇒ p | |G : CG(g)|

Therefore, if [g] is a non-trivial conjugacy class we have that p | |G : CG(g)| ⇒ p | $\sum_{g∈G,[g]non-trivial}|G : C_G(g)|$ and obviously p | pk ⇒ $p \mid Z(G)$ ⇒ Z(G)≥ p ⇒ Z(G) is non-trivial ∎

Theorem. A group of order p, where p is prime, is solvable.

Proof.

Let G be a group of order p. Then, the only subgroup of G is the trivial group. The composition series for G is {id} ⊆ G which is a normal series, and its only factor is G/{id} = G ≋ [Every group of prime order is cyclic] ℤ/ℤp which is Abelian.

Theorem. If |G| = pn where p is a prime number, then G is solvable. In other words, every p-group where p is a prime is solvable

Proof.

By induction on n.

1. n = 1 ⇒ |G| = p, p prime ⇒ [Previous Theorem. A group of order p, where p is prime, is solvable.] G is a cyclic group of prime order, thus it is solvable.

2. Let the statement holds for all k ≤ n.

3. Let’s prove it that it holds for n + 1. [Burnside’s Theorem for p-Groups. The center Z(G) of any group G of order pk, with p prime is non-trivial.] Z(G) ≠ {e}. Futhermore, Z(G) ◁ G (∀g∈G, h∈Z(G), ghg-1 = h by definition of Z(G)) and Z(G) is Abelian ⇒ [Abelian groups are solvable] Z(G) is trivially solvable, {e} ◁ Z(G).

G/Z(G) is again a p-group or trivial (Before we have demonstrated that p | Z(G)).

1. If G/Z(G) is trivial ⇒ G = Z(G) ⇒ [Z(G) is Abelian] G is Abelian ⇒ G is solvable.
2. Otherwise, G/Z(G) is a p-group and |G/Z(G)| ≤ pn ⇒ [By the induction hypothesis] G/Z(G) is solvable, and we have already discussed that Z(G) ◁ G, Z(G) is solvable ⇒ [If G is a group, H ◁ G such that H is solvable and G/H is solvable ⇒ G is solvable] G is solvable.

Theorem. If |G| = pkqs where p and q are prime numbers, k, s ∈ ℕ, and 1 mod p ≠ qt for t = 1, 2, ···, s, then G is solvable.

Proof

Recall: Let p be a prime number that divides |G|. Let k be the biggest natural number such that pk divides |G|. All the subgroups of G with order pk are called p-Sylow subgroups of G. We denote their set to be SylpG = {P : P ≤ G and |P|=pk} and #SylpG = Np = |SylpG|

By 3rd Sylow Theorem, Np = |SylpG| divides the order of G, Np | pkqs and Np ≡ 1 mod p. By assumption, 1 mod p ≠ qt for t = 1, 2, ···, s ⇒ Np = |SylpG| = {P : P ≤ G and |P|=pk} = 1. Let P be the only p-Sylow subgroup of G ⇒ [If G has only one p-Sylow subgroup H, then H is normal. This is because every two p-Sylow subgroups are conjugate, so if Np = 1 ⇒ the p-Sylow subgroup is conjugate only to itself, i.e., it is normal] P ◁ G and by definition |P| = pk ⇒ [Previous Theorem. Every p-group where p is a prime is solvable] P is solvable.

Besides, [G : P] = qs, q prime ⇒ G/P is a q-group ⇒ Since every p-group where p is a prime is solvable, then G/P is solvable. P and G/P are solvable ⇒ [If G is a group, H ◁ G such that H is solvable and G/H is solvable ⇒ G is solvable] P is solvable.

In particular, if |G| = p·q where p and q are distinct prime numbers, then G is solvable (previous theorem for k = s = 1).

Exercise. Any group of order 10 is solvable.

|G| = 10 ⇒ By Cauchy’s theorem, G has a subgroup of order 5. Since this subgroup has index 2, it is automatically normal, say H ◁ G. Therefore, we construct the tower: {id} ⊆ H ⊆ G. It is a normal tower. Futhermore, H/{id} = H ≋ ℤ/5ℤ, Abelian; and G/H ≋ ℤ/2ℤ, Abelian, Hence G is solvable.

Bitcoin donation 