JustToThePoint English Website Version
JustToThePoint en español

Maximize your online presence with our exclusive offer: Get a stunning hero banner, the hero you need and deserve, at an unbeatable price! Bew, 689282782, bupparchard@gmail.com

Root and Ratio Test

Recall

A finite series is given by all the terms of a finite sequence, added together, e.g., {3, 5, 7, . . . , 21}, $\sum_{k=1}^{10} 2k+1 = 120$. An infinite series is the sum of an infinite sequence of numbers. It is represented in the form $\sum_{n=1}^\infty a_n = a_1 + a_2 + a_3 + ···$ where an represents the terms of the sequence, and n is the index that ranges from 1 to infinite.

A series is convergent (or converges) if the sequence of its partial sums tends to a limit, that is, l = $\lim_{n \to ∞} \sum_{k=1}^n a_k$ exists and is a finite number. More precisely, if there exists a number l (or S) such that for every arbitrary small positive number ε, there is a (sufficient large) N, such that ∀n ≥ N, |Sn -l| < ε where Sn = $\sum_{k=1}^n a_k = a_1 + a_2 + ··· + a_n$. If the series is convergent, the number l is called the sum of the series. On the contrary, any series that is not convergent ($\lim_{n \to ∞} \sum_{k=1}^n a_k$ does not exist) is said to be divergent or to diverge.

Divergence Test. If $\lim_{n \to ∞}a_n ≠ 0$, then $\sum_{n=1}^\infty a_n$ diverges.

Integral Comparison. If f(x) is a positive, continuous, and decreasing function on the interval [1, ∞), then $|\sum_{n=1}^\infty f(n) -\int_{1}^{∞} f(x)dx| < f(1).$ Besides, $\sum_{n=1}^\infty f(n)$ converges, if and only if, $\int_{1}^{∞} f(x)dx$ converges.

Theorem. Direct Comparison test. Let {an} and {bn} be positive sequences where an≤bn ∀n≥N, for some N.

  1. If $\sum_{n=1}^\infty b_n$ converges, then $\sum_{n=1}^\infty a_n$ converges.
  2. If $\sum_{n=1}^\infty a_n$ diverges, then $\sum_{n=1}^\infty b_n$ converges.

Ratio Test

Theorem. Ratio Test. Suppose we have the series $\sum_{n=1}^\infty a_n$, and L = $\lim_{n \to ∞} |\frac{a_{n+1}}{a_n}|$. Then, the following statements hold true,

  1. If L < 1 the series $\sum_{n=1}^\infty a_n$ is absolutely convergent and hence convergent.
  2. If L > 1 the series $\sum_{n=1}^\infty a_n$ is divergent.
  3. If L = 1 the series may be divergent, conditionally convergent, or absolutely convergent.

Image 

Root Test

Theorem. Root Test. Suppose we have the series $\sum_{n=1}^\infty a_n$, and L = $\lim_{n \to ∞} \sqrt[n]{|a_n|} = \lim_{n \to ∞} |a_n|^{\frac{1}{n}}$. Then,

  1. If L < 1, the series is absolutely convergence ⇒ convergent.
  2. If L > 1, the series is divergent.
  3. If L = 1, the series may diverge, converge absolutely or converge conditionally.

Proof.

Let’s assume that L < 1 ⇒ ∃r: L < r < 1.

L = $\lim_{n \to ∞} \sqrt[n]{|a_n|} = \lim_{n \to ∞} |a_n|^{\frac{1}{n}}$ ⇒ Let ε>0 such that L + ε = r, ∃N: ∀n ≥ N, 0 ≤[This is trivial, |an| ≥ 0 ∀n ∈ ℕ]$ \sqrt[n]{|a_n|}< L + ε = r$ (We know more than that, $L -ε < \sqrt[n]{|a_n|} < L + ε$)

$\sqrt[n]{|a_n|}< r ↭ |a_n|^{\frac{1}{n}} < r ⇒ |a_n| < r^n$.

Now we know that the series $\sum_{n=0}^\infty r^n$ is a convergent geometric series because 0 < r < 1 ⇒ By the comparison test, $|a_n| < r^n, \sum_{n=N}^\infty |a_n|$ converges, too.

Futhermore, since $\sum_{n=1}^\infty |a_n| = \sum_{n=1}^{N-1} |a_n| + \sum_{n=N}^\infty |a_n|$, we know that $\sum_{n=1}^\infty |a_n|$ is convergent, too since the first term on the right side of the equation is a finite sum of finite terms and therefore, finite.

Let’s now suppose that L > 1 ⇒[L = $\lim_{n \to ∞} \sqrt[n]{|a_n|} = \lim_{n \to ∞} |a_n|^{\frac{1}{n}}$] ∃N such that ∀n ≥ N: $|a_n|^{\frac{1}{n}} > 1$ (Consider ε such that L - ε = 1, $1 = L - ε < |a_n|^{\frac{1}{n}} < L + ε$).

$|a_n|^{\frac{1}{n}} > 1 ⇒ |a_n| > 1^n = 1.$ To sum up, ∀n ≥ N, |an| > 1 ⇒ $\lim_{n \to ∞} |a_n| ≠ 0 ⇒ \lim_{n \to ∞} a_n ≠ 0$ ⇒[By the Divergence Test] $\sum a_n$ is divergent.

If L = 1, the series may diverge ($\sum_{n=1}^\infty \frac{1}{n}$), converge absolutely ($\sum_{n=1}^\infty \frac{1}{n^2}$) or converge conditionally ($\sum_{n=1}^\infty \frac{(-1)^n}{n}$).

Solved examples

We are going to use the Ratio Test, L = $\lim_{n \to ∞}\frac{\frac{n+1}{5^{n+1}}}{\frac{n}{5^n}} = \lim_{n \to ∞}\frac{\frac{n+1}{5}}{n} = \lim_{n \to ∞} \frac{n+1}{5n} = \frac{1}{5} < 1 ⇒ \sum_{n=1}^\infty \frac{n}{5^n}$ converges.

Let’s use the Ratio Test, L = $\lim_{n \to ∞}\frac{\frac{|x|^{n+1}}{n+1}}{\frac{|x|^n}{n}} = \lim_{n \to ∞}\frac{|x|^{n+1}}{n+1} \frac{n}{|x|^n} = \lim_{n \to ∞} |x|\frac{n}{n+1} = |x|$ ⇒

  1. If |x| < 1, the series converges.
  2. If |x| > 1, the series diverges.
  3. If |x| = 1 ⇒ x = ± 1. If x = 1, $\sum_{n=1}^\infty \frac{x^n}{n} = \sum_{n=1}^\infty \frac{1}{n}$ is the harmonic series and diverges. If x = -1 is the negative of the alternating harmonic series and converges. I = [-1, 1) is the interval of convergence and we may think of $\sum_{n=1}^\infty \frac{x^n}{n}$ as a function from the interval of convergence to the real numbers.

Let’s use the Ratio Test, L = $\lim_{n \to ∞}|\frac{(-1)^{n+1}\frac{x^{2(n+1)}}{(2(n+1))!}}{(-1)^n\frac{x^{2n}}{(2n)!}}| = \lim_{n \to ∞}|\frac{(-1)^{n+1}\frac{x^{2}}{(2n+2)(2n+1)(2n)!}}{(-1)^n\frac{1}{(2n)!}}| = \lim_{n \to ∞}|\frac{x^{2}}{(2n+2)(2n+1)}| = \lim_{n \to ∞}\frac{x^{2}}{(2n+2)(2n+1)} = 0 < 1$, the series always converges, R = ∞, I = (-∞, +∞).

Let’s use the Ratio Test, L = $\lim_{n \to ∞}|\frac{\frac{(x-3)^{n+1}}{(n+1)^7+1}}{\frac{(x-3)^n}{n^7+1}}| = \lim_{n \to ∞}|\frac{\frac{(x-3)}{(n+1)^7+1}}{\frac{1}{n^7+1}}| = \lim_{n \to ∞}|\frac{(x-3)(n^7+1)}{(n+1)^7+1}| = |x-3|·\lim_{n \to ∞}|\frac{(n^7+1)}{(n+1)^7+1}|$=[We can divide both the numerator and denominator by n7 and then simplify.] $|x-3|·\lim_{n \to ∞}|\frac{(1+\frac{1}{n^7})}{(\frac{n+1}{n})^7+\frac{1}{n^7}}| = |x-3|·\lim_{n \to ∞}|\frac{(1+\frac{1}{n^7})}{(1+\frac{1}{n})^7+\frac{1}{n^7}}| = |x-3|·1 = |x-3| < 1$ is required to converge. The series is centered at 3, its radius of convergence is 1, and we need to check its endpoints, namely 2 and 4.

Let x = 2, $\sum_{n=0}^\infty \frac{(x-3)^n}{n^7+1} = \sum_{n=0}^\infty \frac{(-1)^n}{n^7+1}$. We can use the alternating series test, it states that an alternating series converges if

  1. bn = $\frac{1}{n^7+1}$ is a decreasing sequence, i.e., bn+1 ≤ bn ↭ $\frac{1}{(n+1)^7+1} ≤ \frac{1}{n^7+1}$
  2. $\lim_{n \to ∞}b_n = 0 ↭ \lim_{n \to ∞} \frac{1}{n^7+1} = 0$ ⇒ x = 2 ∈ I.

Let x = 4, $\sum_{n=0}^\infty \frac{(x-3)^n}{n^7+1} = \sum_{n=0}^\infty \frac{(4-3)^n}{n^7+1} = \sum_{n=0}^\infty \frac{1}{n^7+1}$.

$\frac{1}{n^7+1}≤ \frac{1}{n^7}$ and $\sum_{n=1}^\infty \frac{1}{n^7}$ converges by Theorem (p-series), p = 7 > 1 ⇒[Direct Comparison Theorem] $\sum_{n=1}^\infty \frac{1}{n^7+1}$ converges ⇒ $\sum_{n=0}^\infty \frac{1}{n^7+1}$ converges ⇒ x = 4 ∈ I ⇒ I = [2, 4].

Let’s use the Root Test.

$\lim_{n \to ∞} \sqrt[n]{|n^nx^n|} = \lim_{n \to ∞} n·\sqrt[n]{|x|^n} = \lim_{n \to ∞} n·|x| = |x|·\lim_{n \to ∞} n < 1$ only when x = 0 ⇒ R = 0 and I = {0}.

Let’s use the Root Test.

$\lim_{n \to ∞} \sqrt[n]{(1+\frac{1}{n})^{n^2}} = \lim_{n \to ∞} (1+\frac{1}{n})^{\frac{n^2}{n}} = \lim_{n \to ∞} (1+\frac{1}{n})^n = e > 1 ⇒ \sum_{n=0}^\infty (1+\frac{1}{n})^{n^2}$ diverges.

Let’s use the Root Test.

$\lim_{n \to ∞} \sqrt[n]{\frac{n}{2^n}} = \lim_{n \to ∞} \frac{n^{\frac{1}{n}}}{2} = \frac{1}{2}·\lim_{n \to ∞} n^{\frac{1}{n}}$

$\lim_{n \to ∞} e^{ln(n^{\frac{1}{n}})} = e^{\lim_{n \to ∞} ln(n^{\frac{1}{n}})} = e^{\lim_{n \to ∞} \frac{1}{n}·ln(n)} = e^{\lim_{n \to ∞} \frac{ln(n)}{n}} =$[L’Hôpital, ∞/∞] $ e^{\lim_{n \to ∞} \frac{\frac{1}{n}}{1}} = e^0 = 1.$

$\lim_{n \to ∞} \sqrt[n]{\frac{n}{2^n}} = \frac{1}{2}·\lim_{n \to ∞} n^{\frac{1}{n}} = \frac{1}{2}·1 = \frac{1}{2} < 1$ ⇒ $\sum_{n=1}^\infty \frac{n}{2^n}$ converges.

Bibliography

This content is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License and is based on MIT OpenCourseWare [18.01 Single Variable Calculus, Fall 2007].
  1. NPTEL-NOC IITM, Introduction to Galois Theory.
  2. Algebra, Second Edition, by Michael Artin.
  3. LibreTexts, Calculus and Calculus 3e (Apex). Abstract and Geometric Algebra, Abstract Algebra: Theory and Applications (Judson).
  4. Field and Galois Theory, by Patrick Morandi. Springer.
  5. Michael Penn, and MathMajor.
  6. Contemporary Abstract Algebra, Joseph, A. Gallian.
  7. YouTube’s Andrew Misseldine: Calculus. College Algebra and Abstract Algebra.
  8. MIT OpenCourseWare 18.01 Single Variable Calculus, Fall 2007 and 18.02 Multivariable Calculus, Fall 2007.
  9. Calculus Early Transcendentals: Differential & Multi-Variable Calculus for Social Sciences.
Bitcoin donation

JustToThePoint Copyright © 2011 - 2024 Anawim. ALL RIGHTS RESERVED. Bilingual e-books, articles, and videos to help your child and your entire family succeed, develop a healthy lifestyle, and have a lot of fun. Social Issues, Join us.

This website uses cookies to improve your navigation experience.
By continuing, you are consenting to our use of cookies, in accordance with our Cookies Policy and Website Terms and Conditions of use.