JustToThePoint English Website Version
JustToThePoint en español
Colaborate with us

Mastering Markdown & LaTeX — A Comprehensive Editing Guide

Logic will get you from A to B. Imagination will take you everywhere, Albert Einstein

Topology and Limits

Markdown is a text-to-HTML conversion tool for web writers. It allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to HTML. Markdown Cheatsheet is a quick reference and showcase.

Markdown

# Markdown Formatting Guide

## Headers
### Basic Header Syntax
# An H1 markdown
--------------
--------------

# This is an H1, too

## An H2 markdown
--------------

## This is an H2, too
### H3
###### H6, you get the idea...

Markdown Formatting Guide

Headers

Basic Header Syntax

An H1 markdown



This is an H1, too

An H2 markdown


This is an H2, too

H3

H6, you get the idea…
## Text Formatting
### Basic Text Styles
*italic*, **bold**, ~~Strikethrough~~
### Blockquotes
> The answer to everything…Life, the Universe, and Everything...is...Forty-two.
## Lists
### Unordered Lists
List of animals:
* Dog
* Cat
* Lion
* Elephant
### Ordered Lists
Ordered lists:
1. Cow
2. Tiger
3. Bird
4. Ant

Text Formatting

Basic Text Styles

italic, bold, Strikethrough

Blockquotes

The answer to everything…Life, the Universe, and Everything…is…Forty-two.

Lists

Unordered Lists

List of animals:

Ordered Lists

Ordered lists:

  1. Cow
  2. Tiger
  3. Bird
  4. Ant
# Special Elements
### Keyboard Input
Press <kbd>Winkbd> + <kbd>Skbd> (Start menu)
### Links
[Google](https://www.google.com/)
## Escaping Techniques
**Preventing Automatic Numbering**. \
Using a Backslash: \
1\. Autonomous Nature. \
Using a Non-Breaking Space: \
1 . Autonomous Nature.

Special Elements

Keyboard Input

Press Win + S (Start menu)

Google

Escaping Techniques

Preventing Automatic Numbering.
Using a Backslash:
1. Autonomous Nature.
Using a Non-Breaking Space:
1 . Autonomous Nature.

# Emoji Support
## Common Emoji Categories
I :heart: Math!
Think about it: :thinking: :bulb:
- Basic operations: :heavy_plus_sign: :heavy_minus_sign: :heavy_multiplication_x::heavy_division_sign:
- Symbols: :infinity: :pi:
- Geometry: :triangular_ruler: :black_square_button: :red_circle:
- Tools: :abacus: :straight_ruler:
- Academic: :mortar_board: :books:
- Thinking/Problem-solving: :thinking: :bulb:
- Miscellaneous: :atom_symbol: :bar_chart: :sunglasses: :eight_pointed_black_star: :cry: :wink: :laughing: :yum:

Emoji Support

Common Emoji Categories

I ❤️ Math! Think about it: 🤔 💡

Emoji Resources

# Code Blocks
## Python Example
Ensure that there are three backticks (```) before (``` language, e.g., ``` python) and after the code block to properly format it in Markdown.
def my_function():
   print("Hello from a function")

my_function()
# Tables
| Basic Syntax | Description                             |
| ------------ | --------------------------------------- |
| Heading      | # H1, ## H2, ### H3                     |
| Format       | **bold**, *italic*, ~~strike~~          |
| Blockquote   | > blockquote                            |
| List         | - unordered, 1. ordered                 |
| Code         | \`inline\` or \`\`\`block\`\`\`         |
| Link         | [text](url)                             |
| Image        | ![alt](/maths/images/PeterCuclillasFindPotentialFunction.jpg)                         |
| Table        | pipes \| and hyphens ---                |

Code Blocks

Python Example

Ensure that there are three backticks () before ( language, e.g., ``` python) and after the code block to properly format it in Markdown.

def my_function():
    print("Hello from a function")

Tables

Basic Syntax Description
Heading # H1, ## H2, ### H3
Format bold, italic, strike
Blockquote > blockquote
List - unordered, 1. ordered
Code `inline` or ```block```
Link text
Image alt
Table pipes | and hyphens —

Mathematical Notation Guide

Use in the front matter, math: true.

# Mathematical Notation Guide

## Basic Symbols
### Greek Letters
$\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \lambda, \mu$

### Operators
- Arithmetic: $\times \div \pm \mp \cdot$
- Comparison: $\lt \gt \le \ge \neq \not\geq \approx$
- Set Operations: $\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin$
- Special Symbols: $\forall \exists \infty \emptyset \varnothing$

## Functions & Notation
### Roots and Limits
- Square root: $\sqrt{2}$
- n-th root: $\sqrt[n]{2}$
- Limits: $\lim_{x \to 0} f(x)$, $\lim_{\Delta x \to 0} \frac{f(x_0+\Delta x) -f(x_0)}{\Delta x}$

### Piecewise Functions
$f(x) =
\begin{cases}
  x + 1, &x > 0  \\\\
  -2x + 2, &x < 0
\end{cases}$

### Special Functions
* Fraction: $\frac{2}{3}$
* Binomial Coefficient: ${n+1 \choose 2k}$
* Vector Symbol: $\hat{\mathbf{T}}$
* Tilde Notation: $\tilde{x}$
* Blackboard Font: $\mathbb{R}$ (real numbers)
* Periodical Numbers: $0.\widehat{3}$ (repeating decimal)

## Calculus
### Sums and Integrals
* Summation: $\sum_{i=0}^\infty i$
* Integral: $\int x^{n} dx$
* Definite Integral: $\int_{a}^{b} f(x)dx = F(b)-F(a) = F(x) \bigg|_{a}^{b}$
* Contour Integral: $\oint_C \vec{F} \cdot d\vec{r}$
### Derivatives
* Derivative Operator: $\frac{d}{dx}$
* Evaluation: $e^{u}|_{u=0}$
* Gradient: $\nabla w = \langle 2x, 2y \rangle$

Basic Symbols

Greek Letters

$\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \lambda, \mu$

Operators

Functions & Notation

Roots and Limits

Piecewise Functions

$f(x) = \begin{cases} x + 1, &x > 0 \\ -2x + 2, &x < 0 \end{cases}$

Special Functions

Calculus

Sums and Integrals

Derivatives

## Linear Algebra
### Matrices and Determinants
$(\begin{smallmatrix}a & 0\\\ 0 & b\end{smallmatrix})$
$\Bigl \vert\begin{smallmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}\\\ -1 & 1 & 0\\\ -1 & 0 & 1\end{smallmatrix}\Bigr \vert$

## Linear Systems
### General form
$\begin{cases}
a_{11}x_1 +a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\\\
a_{21}x_1 +a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\\\
\vdots \\\\
a_{n1}x_1 +a_{n2}x_2 + \cdots + a_{nn}x_n = b_n
\end{cases}$
### Transformation example
$T(x)=0 \leftrightarrow \left( \begin{smallmatrix}x_1 + 2x_2\\\ x_3-3x_2\end{smallmatrix} \right) = \left( \begin{smallmatrix}0\\\ 0\end{smallmatrix} \right)$
$\begin{cases} x_1 + 2x_2 = 0 \\\ x_3 -3x_2 = 0 \end{cases}$

Linear Algebra

Matrices and Determinants

$(\begin{smallmatrix}a & 0\\ 0 & b\end{smallmatrix})$ $\Bigl \vert\begin{smallmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}\\ -1 & 1 & 0\\ -1 & 0 & 1\end{smallmatrix}\Bigr \vert$

Linear Systems

General form

$\begin{cases} a_{11}x_1 +a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 +a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 +a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$

Transformation example

$T(x)=0 \leftrightarrow \left( \begin{smallmatrix}x_1 + 2x_2\\ x_3-3x_2\end{smallmatrix} \right) = \left( \begin{smallmatrix}0\\ 0\end{smallmatrix} \right)$

$\begin{cases} x_1 + 2x_2 = 0 \\ x_3 -3x_2 = 0 \end{cases}$

## Advanced Notation
### Sequences and Sets
* Sequence: $\\{a_n\\}_{n=1}^\infty$
* Intersection: $\bigcap^{\infty}_{i=1} {I_i} \neq \emptyset$
### Text Embedding
$\text{In a different notation}$

### Laplace Transforms
$\mathcal{L}(af+bg) = a\mathcal{L}(f)+b\mathcal{L}(g), \quad \mathcal{L}^{-1}(F(s)) = f(t)u(t)$

### Spacing Control
* Thick space: $;$
* Medium space: $:$
* Thin space: $,$
* Negative space: $!$

Advanced Notation

Sequences and Sets

Text Embedding

$\text{In a different notation}$

Laplace Transforms

$\mathcal{L}(af+bg) = a\mathcal{L}(f)+b\mathcal{L}(g), \quad \mathcal{L}^{-1}(F(s)) = f(t)u(t)$

Spacing Control

Quaternion Multiplication Table

1 -1 I -I J -J K -K
1 1 -1 I -I J -J K -K
1 -1 1 -I I -J J -K K
I I -I -1 1 K -K -J J
-I -I I 1 -1 -K K J -J
J J -J -K K -1 1 I -I
-J -J J K -K 1 -1 -I I
K K -K J -J -I I -1 1
-K -K K -J J I -I 1 -1
Bitcoin donation

JustToThePoint Copyright © 2011 - 2025 Anawim. ALL RIGHTS RESERVED. Bilingual e-books, articles, and videos to help your child and your entire family succeed, develop a healthy lifestyle, and have a lot of fun. Social Issues, Join us.

This website uses cookies to improve your navigation experience.
By continuing, you are consenting to our use of cookies, in accordance with our Cookies Policy and Website Terms and Conditions of use.