Logic will get you from A to B. Imagination will take you everywhere, Albert Einstein
Markdown is a text-to-HTML conversion tool for web writers. It allows you to write using an easy-to-read, easy-to-write plain text format, then convert it to HTML. Markdown Cheatsheet is a quick reference and showcase.
# Markdown Formatting Guide
## Headers
### Basic Header Syntax
# An H1 markdown
--------------
--------------
# This is an H1, too
## An H2 markdown
--------------
## This is an H2, too
### H3
###### H6, you get the idea...
## Text Formatting
### Basic Text Styles
*italic*, **bold**, ~~Strikethrough~~
### Blockquotes
> The answer to everything…Life, the Universe, and Everything...is...Forty-two.
## Lists
### Unordered Lists
List of animals:
* Dog
* Cat
* Lion
* Elephant
### Ordered Lists
Ordered lists:
1. Cow
2. Tiger
3. Bird
4. Ant
italic, bold, Strikethrough
The answer to everything…Life, the Universe, and Everything…is…Forty-two.
List of animals:
Ordered lists:
# Special Elements
### Keyboard Input
Press <kbd>Winkbd> + <kbd>Skbd> (Start menu)
### Links
[Google](https://www.google.com/)
## Escaping Techniques
**Preventing Automatic Numbering**. \
Using a Backslash: \
1\. Autonomous Nature. \
Using a Non-Breaking Space: \
1 . Autonomous Nature.
Press Win + S (Start menu)
Preventing Automatic Numbering.
Using a Backslash:
1. Autonomous Nature.
Using a Non-Breaking Space:
1 . Autonomous Nature.
# Emoji Support
## Common Emoji Categories
I :heart: Math!
Think about it: :thinking: :bulb:
- Basic operations: :heavy_plus_sign: :heavy_minus_sign: :heavy_multiplication_x::heavy_division_sign:
- Symbols: :infinity: :pi:
- Geometry: :triangular_ruler: :black_square_button: :red_circle:
- Tools: :abacus: :straight_ruler:
- Academic: :mortar_board: :books:
- Thinking/Problem-solving: :thinking: :bulb:
- Miscellaneous: :atom_symbol: :bar_chart: :sunglasses: :eight_pointed_black_star: :cry: :wink: :laughing: :yum:
I ❤️ Math! Think about it: 🤔 💡
# Code Blocks
## Python Example
Ensure that there are three backticks (```) before (``` language, e.g., ``` python) and after the code block to properly format it in Markdown.
def my_function():
print("Hello from a function")
my_function()
# Tables
| Basic Syntax | Description |
| ------------ | --------------------------------------- |
| Heading | # H1, ## H2, ### H3 |
| Format | **bold**, *italic*, ~~strike~~ |
| Blockquote | > blockquote |
| List | - unordered, 1. ordered |
| Code | \`inline\` or \`\`\`block\`\`\` |
| Link | [text](url) |
| Image |  |
| Table | pipes \| and hyphens --- |
Ensure that there are three backticks () before (
language, e.g., ``` python) and after the code block to properly format it in Markdown.
def my_function():
print("Hello from a function")
Basic Syntax | Description |
---|---|
Heading | # H1, ## H2, ### H3 |
Format | bold, italic, |
Blockquote | > blockquote |
List | - unordered, 1. ordered |
Code | `inline` or ```block``` |
Link | text |
Image | ![]() |
Table | pipes | and hyphens — |
Use in the front matter, math: true
.
# Mathematical Notation Guide
## Basic Symbols
### Greek Letters
$\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \lambda, \mu$
### Operators
- Arithmetic: $\times \div \pm \mp \cdot$
- Comparison: $\lt \gt \le \ge \neq \not\geq \approx$
- Set Operations: $\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin$
- Special Symbols: $\forall \exists \infty \emptyset \varnothing$
## Functions & Notation
### Roots and Limits
- Square root: $\sqrt{2}$
- n-th root: $\sqrt[n]{2}$
- Limits: $\lim_{x \to 0} f(x)$, $\lim_{\Delta x \to 0} \frac{f(x_0+\Delta x) -f(x_0)}{\Delta x}$
### Piecewise Functions
$f(x) =
\begin{cases}
x + 1, &x > 0 \\\\
-2x + 2, &x < 0
\end{cases}$
### Special Functions
* Fraction: $\frac{2}{3}$
* Binomial Coefficient: ${n+1 \choose 2k}$
* Vector Symbol: $\hat{\mathbf{T}}$
* Tilde Notation: $\tilde{x}$
* Blackboard Font: $\mathbb{R}$ (real numbers)
* Periodical Numbers: $0.\widehat{3}$ (repeating decimal)
## Calculus
### Sums and Integrals
* Summation: $\sum_{i=0}^\infty i$
* Integral: $\int x^{n} dx$
* Definite Integral: $\int_{a}^{b} f(x)dx = F(b)-F(a) = F(x) \bigg|_{a}^{b}$
* Contour Integral: $\oint_C \vec{F} \cdot d\vec{r}$
### Derivatives
* Derivative Operator: $\frac{d}{dx}$
* Evaluation: $e^{u}|_{u=0}$
* Gradient: $\nabla w = \langle 2x, 2y \rangle$
$\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \lambda, \mu$
$f(x) = \begin{cases} x + 1, &x > 0 \\ -2x + 2, &x < 0 \end{cases}$
## Linear Algebra
### Matrices and Determinants
$(\begin{smallmatrix}a & 0\\\ 0 & b\end{smallmatrix})$
$\Bigl \vert\begin{smallmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}\\\ -1 & 1 & 0\\\ -1 & 0 & 1\end{smallmatrix}\Bigr \vert$
## Linear Systems
### General form
$\begin{cases}
a_{11}x_1 +a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\\\
a_{21}x_1 +a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\\\
\vdots \\\\
a_{n1}x_1 +a_{n2}x_2 + \cdots + a_{nn}x_n = b_n
\end{cases}$
### Transformation example
$T(x)=0 \leftrightarrow \left( \begin{smallmatrix}x_1 + 2x_2\\\ x_3-3x_2\end{smallmatrix} \right) = \left( \begin{smallmatrix}0\\\ 0\end{smallmatrix} \right)$
$\begin{cases} x_1 + 2x_2 = 0 \\\ x_3 -3x_2 = 0 \end{cases}$
$(\begin{smallmatrix}a & 0\\ 0 & b\end{smallmatrix})$ $\Bigl \vert\begin{smallmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}}\\ -1 & 1 & 0\\ -1 & 0 & 1\end{smallmatrix}\Bigr \vert$
$\begin{cases} a_{11}x_1 +a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 +a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 +a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$
$T(x)=0 \leftrightarrow \left( \begin{smallmatrix}x_1 + 2x_2\\ x_3-3x_2\end{smallmatrix} \right) = \left( \begin{smallmatrix}0\\ 0\end{smallmatrix} \right)$
$\begin{cases} x_1 + 2x_2 = 0 \\ x_3 -3x_2 = 0 \end{cases}$
## Advanced Notation
### Sequences and Sets
* Sequence: $\\{a_n\\}_{n=1}^\infty$
* Intersection: $\bigcap^{\infty}_{i=1} {I_i} \neq \emptyset$
### Text Embedding
$\text{In a different notation}$
### Laplace Transforms
$\mathcal{L}(af+bg) = a\mathcal{L}(f)+b\mathcal{L}(g), \quad \mathcal{L}^{-1}(F(s)) = f(t)u(t)$
### Spacing Control
* Thick space: $;$
* Medium space: $:$
* Thin space: $,$
* Negative space: $!$
$\text{In a different notation}$
$\mathcal{L}(af+bg) = a\mathcal{L}(f)+b\mathcal{L}(g), \quad \mathcal{L}^{-1}(F(s)) = f(t)u(t)$
1 | -1 | I | -I | J | -J | K | -K | |
---|---|---|---|---|---|---|---|---|
1 | 1 | -1 | I | -I | J | -J | K | -K |
1 | -1 | 1 | -I | I | -J | J | -K | K |
I | I | -I | -1 | 1 | K | -K | -J | J |
-I | -I | I | 1 | -1 | -K | K | J | -J |
J | J | -J | -K | K | -1 | 1 | I | -I |
-J | -J | J | K | -K | 1 | -1 | -I | I |
K | K | -K | J | -J | -I | I | -1 | 1 |
-K | -K | K | -J | J | I | -I | 1 | -1 |