Mathematics is the language in which God has written the universe, Galileo Galilei

Let z = x + iy with $x, y \in \mathbb{R}$. The exponential function exp: $\mathbb{C} → \mathbb{C}, z ↦ e^z$ may be defined in several equivalent ways. These definitions agree with one another and extend the usual real exponential function to the complex plane.
Key Properties:
An entire function in complex analysis is a function that is holomorphic (complex differentiable) at every point in the complex plane (ℂ). Essentially, it’s a complex function that is smooth and well-behaved everywhere in the complex plane.
The logarithm is defined as the inverse of the complex exponential function. Since $e^z$ is periodic with period $2\pi i, e^{z + 2\pi i} = e^z$, the logarithm in the complex plane cannot be single-valued. Instead, it is a multi-valued function.
Definition (Multi-valued Logarithm). For any non-zero complex number $z \in \mathbb{C}^*$, the (multi-valued) complex logarithm is defined by log(z) = ln(|z|) + i * arg(z) where:
It’s a multi-valued function due to the periodic nature of the argument (arg(z) can take multiple values differing by 2πk, where k is any integer $arg(z) = \theta + 2\pi k, k \in \mathbb{Z}$ where $\theta$ is any angle satisfying $z = |z|(\cos(\theta) + i\sin(\theta))$). Hence, the logarithm has infinitely many values: $log(z) = ln(|z|) + i(\theta + 2\pi k), k \in \mathbb{Z}$, e.g, for z = 1 + i: $log(z) = ln(\sqrt{2}) + i * (π/4 + 2πk)$. This illustrates that each nonzero complex number has infinitely many logarithms, differing by integer multiples of 2πi.
Principal Branch of the Logarithm. To obtain a single-valued logarithm, we must restrict the argument to a specific interval. For a complex number z = x + yi, the principal branch of the complex logarithm is defined as: Log(z) = ln(|z|) + i * Arg(z) $\forall z \in \mathbb{C}^*$ except along the negative real axis (where the argument jumps discontinuously) where:
Consider a point on the negative real axis, e.g., z = −r with r > 0. Its principal argument is Arg(−r) = π.
This discontinuity is inherent to the choice of the principal branch and is why the negative real axis is called the branch cut of Log(z)..
The complex trigonometric functions are defined naturally using the complex exponential function. These definitions extend the real trigonometric functions and preserve their fundamental identities.
For any $z \in \mathbb{C}$, $\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}$, $\cos(z) := \frac{e^{iz} + e^{-iz}}{2}$. These are often referred to as Euler’s formulas for complex sine and cosine. They are not merely analogies: they define the complex trigonometric functions.
Let z = x + iy, then iz = i(x+iy) = ix - y, so $e^{iz} = e^{-y + ix} = e^{-y} e^{ix} = e^{-y}(cos(x) + i sin(x))$. Similarly, $e^{-iz} = e^{-ix + y} = e^{y} e^{-ix} = e^{y}(cos(x) - i sin(x))$.
Substituting into the sine formula:
$$ \begin{aligned} sin(z) &=[\text{By definition}] \frac{e^{iz} - e^{-iz}}{2i} \\[2pt] &= \frac{e^{-y}(cos(x) + i sin(x)) - e^{y}(cos(x) - i sin(x))}{2i} \\[2pt] &=\frac{(e^{-y} - e^{y}) cos(x) + i(e^{-y} + e^{y}) sin(x)}{2i} =\frac{-(e^{y} - e^{-y}) cos(x) + i (e^{-y} + e^{y}) sin(x)}{2i} \\[2pt] &=\frac{-(2 sinh(y)) cos(x) + i (2 cosh(y)) sin(x)}{2i} = \frac{-(2 sinh(y)) cos(x)}{2i} + \frac{i (2 cosh(y)) sin(x)}{2i} \\[2pt] &[\text{Since 1/i = -i, so -1/i = i}]=i sinh(y) cos (x) + cosh(y) sin(x). \end{aligned} $$Similarly,
$$ \begin{aligned} cos(z) &=[\text{By definition}] \frac{e^{iz} + e^{-iz}}{2} \\[2pt] &= \frac{e^{-y}(cos(x) + i sin(x)) + e^{y}(cos(x) - i sin(x))}{2} \\[2pt] &=\frac{(e^{-y} + e^{y}) cos(x) + i(e^{-y} - e^{y}) sin(x)}{2} \\[2pt] &=\frac{(2 cosh(y)) cos(x) + i (-2 sinh(y)) sin(x)}{2} \\[2pt] &=cosh(y) cos(x) - i sinh(y) sin(x). \end{aligned} $$The complex hyperbolic functions are defined analogously: $\sinh(z) := \frac{e^z - e^{-z}}{2}, \quad \cosh(z) := \frac{e^z + e^{-z}}{2}$
Relationships Between Trigonometric and Hyperbolic Functions: $\sin(iz) = i\sinh z, \quad \cos(iz) = \cosh z, \sinh(iz) = i\sin z, \quad \cosh(iz) = \cos z$.
$$ \begin{aligned} sinh(z) &=[\text{By definition}] \frac{1}{2}(e^{z}-e^{-z}) \\[2pt] &= \frac{1}{2}(e^{x+iy}-e^{-(x+iy)}) = \frac{1}{2}[(e^{x}e^{iy})-(e^{-x}e^{-iy})] \\[2pt] &=[\text{Using Euler's formula}] \frac{1}{2}[e^{x}cos(y)+e^{x}isin(y)-cos(y)e^{-x}+isin(y)e^{-x}] \\[2pt] &= cos(y)(\frac{1}{2}[e^{x}-e^{-x}]) + sin(y)(\frac{i}{2}[e^{x}+e^{-x}]) = \frac{1}{2}[e^{x}-e^{-x}]cos(y)+i\frac{1}{2}[e^{x}+e^{-x}]sin(y) \\[2pt] &=sinh(x)cos(y)+icosh(x)sin(y). \end{aligned} $$$$ \begin{aligned} cosh(z) &=[\text{By definition}] \frac{1}{2}(e^{z}+e^{-z}) \\[2pt] &= \frac{1}{2}(e^{x+iy}+e^{-(x+iy)}) = \frac{1}{2}[(e^{x}e^{iy})+(e^{-x}e^{-iy})] \\[2pt] &=[\text{Using Euler's formula}] \frac{1}{2}[e^{x}cos(y)+e^{x}isin(y)+cos(y)e^{-x}-isin(y)e^{-x}] \\[2pt] &= cos(y)(\frac{1}{2}[e^{x}+e^{-x}]) + sin(y)(\frac{i}{2}[e^{x}-e^{-x}]) = \frac{1}{2}[e^{x}+e^{-x}]cos(y)+i\frac{1}{2}[e^{x}-e^{-x}]sin(y) \\[2pt] &=cosh(x)cos(y)+isinh(x)sin(y). \end{aligned} $$$\boxed{sinh(z)=sinh(x)cos(y)+icosh(x)sin(y)}$
$\boxed{cosh(z) = cosh(x)cos(y)+isinh(x)sin(y)}$
The remaining functions are defined in the usual way: $tan(z) = \frac{sin(z)}{cos(z)}, sec(z) = \frac{1}{cos(z)}$
The addition formulae may be written also as sin(x + iy) =[$sin(z_1+z_2) = sin(z_1)cos(z_2) + cos(z_1)sin(z_2)$] sin(x)cos(iy) + cos(x)sin(iy) = sin(x)cosh(y)+icos(x)sinh(y).
Then, |sin(x + iy)| = $\sqrt{sin²(x)cosh²(y)+cos²(x)sinh²(y)}$ = [cos2(x) + sin2(x) = 1] $\sqrt{sin²(x)cosh²(y) + (1-sin²(x))sinh²(y)} = \sqrt{sin²(x)(cosh²(y)-sinh²(x)) + sinh²(y)} =$ [Using cosh2(y) -sinh2(y) = 1. This is a fundamental hyperbolic identity] $\sqrt{sin²(x) + sinh²(y)}$
Therefore, $|sin(x + iy)| = \sqrt{\sin^2(x) + sinh²(y)}$. For fixed x, as $|y| \to \infty, |sinh(y)| \approx \frac{1}{2}e^{|y|}$ grows exponentially, so $|\sin(x+iy)| \approx |sinh(y)| \approx \frac{1}{2}e^{|y|} \to \infty$. In particular, for purely imaginary arguments, sin(iy) = isinh(y), then $|sin(iy)| = |sinh(y)| \to \infty$ This formula clearly explains why complex sine grows exponentially in the imaginary direction.
$\sinh(y) = \frac{e^y - e^{-y}}{2}$. As $y \to +\infty$, $e^{-y}$ is negligible, so $\sinh(y) \sim \frac{1}{2} e^y$. As $y \to -\infty$, $e^{y}$ is negligible and $e^{-y}$ dominates, so $\sinh(y) \sim -\frac{1}{2} e^{-y}$, hence $|\sinh(y)| \sim \frac{1}{2} e^{|y|}$ for large $|y|$. So indeed, $\sinh(y)$ grows exponentially in magnitude as $|y| \to \infty$.
Let $z \in \mathbb{C}^*$ and $\alpha \in \mathbb{C}$. Complex power functions are defined using the complex logarithm: $\boxed{z^\alpha = e^{\alpha \log(z)}}$. Since the complex logarithm log(z) is multi-valued, complex powers are, in general, multi-valued functions.
Recall that $log(z) = ln|z| + i(arg(z) + 2\pi k), k \in \mathbb{Z}$. Substituting this into the previous definition: $z^\alpha = e^{\alpha \log(z)} = e^{\alpha(ln|z| + i(arg(z) + 2\pi k))} = |z|^{\alpha}e^{i\alpha (arg(z) + 2\pi k)}$. Thus, different choices of the argument lead to different values of $z^\alpha$.
The nature of $z^\alpha$ depends critically on the exponent $\alpha$.
Because the exponential function is periodic with period 2πi, two integer values $k_1$ and $k_2$ yield the same result if $\frac{p(arg(z)+2\pi k_1)}{q} = \frac{p(arg(z)+2\pi k_2)}{q} \text{ mod (2π) } \implies \frac{2\pi p(k_1-k_2)}{q} ≡ 0 \text{ mod (2π) } \implies p(k_1-k_2)$ ≡ 0 (mod q). Since p and q are coprime this is equivalent to $k_1 ≡ k_2$ (mod q). Hence, there are exactly q distinct values corresponding to k = 0, 1, …, q - 1.
To obtain a single-valued branch, we define the principal power using the principal logarithm: $\boxed{z^\alpha := e^{\alpha Log(z)}}$ where $Log(z) = \ln|z| + iArg(z), Arg(z) \in (-\pi, \pi]$.
This definition yields a single-valued, continuous function on $\mathbb{C} \setminus (-\infty,0]$, with a branch cut along the negative real axis, e.g., Square Root, let $\alpha = \tfrac{1}{2}, z^{1/2} = \sqrt{z}$
Using the multi-valued logarithm, $\sqrt{z} = e^{\frac{1}{2}(\ln|z| + i(arg(z) + 2\pi k))} =[*] \pm \sqrt{|z|} e^{iarg(z)/2}.$ Thus, the square root is two-valued.
[*] Since $e^{i\pi k} = 1$ for even k and -1 for odd k, only two distinct values arise.
The principal square root is defined by $\boxed{\sqrt{z} := \sqrt{|z|} e^{iArg(z)/2}}$ with $Arg(z) \in (-\pi,\pi]$. This choice of Arg(z) places the branch cut along the negative real axis (including the origin), where $\sqrt{z}$ is discontinuous.