Reality has a bad habit of massacring beautiful and carefully constructed fantasies, but the world is relentless and cruel, and dreams are just dreams; in other words, dreams need to be based upon something realistically possible, that is, taking into consideration your age, knowledge, talents, health, economical and social circumstances, and the social and economic environment where you are present, JustToThePoint, Anawim, #justtothepoint.
In calculus, an antiderivative or indefinite integral, G, of a function g, is the function that can be differentiated to obtain the original function, that is, G’ = f.
G(x) = $\int f(x)dx$
Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles.
This is the second article in our two-part series about Integration of Trigonometric Functions and is a continuation of the first one, so if you haven’t taken a look at it yet, I recommend you read it first and come back.
$\int \frac{dx}{x^2\sqrt{x^2+4}}$ =[Trigonometric substitution, x = 2tan(θ), dx = 2sec2(θ)dθ] $\int \frac{2sec^2(θ)dθ}{4tan^2(θ)\sqrt{4tan^2(θ)+4}} = \int \frac{sec^2(θ)dθ}{4·tan^2(θ)\sqrt{tan^2(θ)+1}} = $[Recall that sec2(x)=1+tan2(x)] $\int \frac{sec^2(θ)dθ}{4·tan^2(θ)\sqrt{sec^2(θ)}} = \int \frac{sec(θ)dθ}{4·tan^2(θ)} = \frac{1}{4}\int \frac{1}{cos(θ)}\frac{cos^2(θ)}{sin^2(θ)}dθ = \frac{1}{4}\int \frac{cos(θ)}{sin^2(θ)}dθ$ =[Derivatives of Trigonometric Formulas, csc’(θ) = -csc(θ)cot(θ) = $-\frac{1}{sin(θ)}·\frac{1}{tan(θ)}=-\frac{1}{sin(θ)}\frac{cos(θ)}{sin(θ)} = \frac{-cos(θ)}{sin^2(θ)}$] = $-\frac{csc(θ)}{4}+C.$
$\int \frac{\sqrt{x^2-4}}{x^4}dx$ [Trigonometric substitution, think about $x^2-4=x^2-2^2$, so it needs to be a right triangle’s leg, Figure 5, x = 2sec(θ), dx = 2sec(θ)tan(θ)dθ] = $\int \frac{\sqrt{4sec^2(θ)-4}}{(2sec(θ))^4}2sec(θ)tan(θ)dθ = \int \frac{\sqrt{4(sec^2(θ)-1)}}{16sec^4(θ)}2sec(θ)tan(θ)dθ = \frac{1}{4}\int \frac{\sqrt{sec^2(θ)-1}}{sec^4(θ)}sec(θ)tan(θ)dθ$ =[Recall sec2(x) = 1 + tan2(x)] $\frac{1}{4}\int \frac{\sqrt{tan^2(θ)}}{sec^4(θ)}sec(θ)tan(θ)dθ = \frac{1}{4}\int \frac{tan(θ)}{sec^4(θ)}sec(θ)tan(θ)dθ = \frac{1}{4}\int \frac{tan^2(θ)}{sec^3(θ)}dθ = \frac{1}{4}\int tan^2(θ)·cos^3(θ)dθ = \frac{1}{4}\int \frac{sin^2(θ)}{cos^2(θ)}·cos^3(θ)dθ = \frac{1}{4}\int sin^2(θ)·cos(θ)dθ$ =[Integration substitution u = sin(θ), du = cos(θ)dθ] $\frac{1}{4}\int u^2du = \frac{1}{4}\frac{1}{3}u^3 = \frac{1}{12}sin^3(θ)$ =[Backtrack our substitution, Figure 5, sin(θ) = $\frac{\sqrt{x^2-4}}{x}$] $\frac{1}{12}(\frac{(\sqrt{x^2-4})^3}{x^3}) = \frac{(x^2-4)^{\frac{3}{2}}}{12x^3}+C$
Area = $\int_{0}^{b} \sqrt{a^2-y^2}dy$ =[Trigonometric substitution, y = asin(θ), $\sqrt{a^2-y^2} = \sqrt{a^2-a^2sin^2(θ)} = a\sqrt{1-sin^2(θ)} = a\sqrt{cos^2(θ)}$ = acos(θ) = x, dy = acos(θ)dθ] $\int_{0}^{b} acos(θ)(acos(θ)dθ) = a^2\int cos^2(θ)dθ =$[It was previously calculated] $a^2(\frac{θ}{2}+\frac{sin(2θ)}{4}) = a^2(\frac{θ}{2}+\frac{sin(θ)cos(θ)}{2})$ = [sin(θ) = y⁄a ⇒ θ = arcsin(y⁄a)]$\frac{a^2arcsin(y/a)}{2}+ \frac{y(\sqrt{a^2-y^2})}{2}\bigg|_{0}^{b} = \frac{a^2arcsin(b/a)}{2}+ \frac{b(\sqrt{a^2-b^2})}{2} = \frac{a^2θ_0}{2}+ \frac{b(\sqrt{a^2-b^2})}{2} $ where $θ_0 = arcsin(\frac{b}{a})$.
Geometric interpretation. If you have a circle with radius r and a central angle θ (measured in radians), the area of the sector, aka Area1, is given by $\frac{1}{2}r^2θ = \frac{1}{2}a^2θ_0$. Area2 = $\frac{b(\sqrt{a^2-b^2})}{2}$ is the area of the upper triangle.
Now, we need to backtrack our substitution (Figure 1), $x = 2sin(θ) ⇒ sin(θ)=\frac{x}{2}.$ By the Pythagorean theorem, $c^2+x^2 = 2 ⇒c = \sqrt{4-x^2}$. Besides, $tan(θ)=\frac{x}{\sqrt{4-x^2}}, cot(θ)=\frac{1}{tan(θ)} = \frac{\sqrt{4-x^2}}{x}, \int \frac{\sqrt{4-x^2}}{x^2}dx = -cot(θ) -θ +C = -\frac{\sqrt{4-x^2}}{x}-sin^{-1}(\frac{x}{2})+C.$
$\int sec^4(x)dx$ =[Recall sec2(x) = 1 + tan2(x)] $\int (1 + tan^2(x))sec^2(x)dx$ [Apply substitution, u = tan(x), du = sec2(x)dx] $\int (1 + u^2)du = u + \frac{u^3}{3} + C = tan(x) + \frac{tan^3(x)}{3} + C.$
$\int \frac{dx}{x^2\sqrt{1+x^2}}$ [Recall that sec2(x) = 1 + tan2(x), let’s apply substitution x = tan(θ), 1 + x2 = sec2(θ), dx = sec2(θ)dθ] $\int \frac{sec^2(θ)dθ}{(tan(θ))^2sec(θ)} = \int \frac{sec(θ)dθ}{(tan(θ))^2} = \int \frac{cos^2(θ)dθ}{cos(θ)sin^2(θ)} = \int \frac{cos(θ)dθ}{sin^2(θ)}$ [u = sin(θ), du = cos(θ)dθ] $\int \frac{du}{u^2} = \frac{-1}{u} + C = \frac{-1}{sin(θ)} + C = -csc(θ) + C$ [Figure 1.b.] = $-\frac{\sqrt{1+x^2}}{x}+C$
Now, we need to backtrack our substitution (Figure 4), x = 3sin(θ) ⇒ $sin(θ)=\frac{x}{3}, θ = sin^{-1}(\frac{x}{3}), cos(θ)=\frac{\sqrt{9-x^2}}{3} ⇒ \int \frac{x^2}{\sqrt{9-x^2}}dx = \frac{9}{2}(θ-sin(θ)cos(θ)) = \frac{9}{2}(sin^{-1}(\frac{x}{3})-\frac{x}{3}\frac{\sqrt{9-x^2}}{3}) = \frac{9}{2}(sin^{-1}(\frac{x}{3})-\frac{x\sqrt{9-x^2}}{9})+C.$