JustToThePoint English Website Version
JustToThePoint en español
Colaborate with us

Inhomogeneous Systems

Recall

All warfare is based on deception, Sun tzu, The Art of War

War is a racket. It always has been. It is possibly the oldest, easily the most profitable, surely the most vicious. It is the only one international in scope. It is the only one in which the profits are reckoned in dollars and the losses in lives, Smedley Butler

Fourier Series

Differential equations

Definition. A differential equation is an equation that involves one or more dependent variables, their derivatives with respect to one or more independent variables, and the independent variables themselves, e.g., $\frac{dy}{dx} = 3x +5y, y’ + y = 4xcos(2x), \frac{dy}{dx} = x^2y+y, etc.$

It involves (e.g., $\frac{dy}{dx} = 3x +5y$):

First-Order Linear Ordinary Differential Equations (ODEs)

Definition. A first-order linear ordinary differential equation is an ordinary differential equation (ODE) involving an unknown function y(x), its first derivative y′, and functions of the independent variable x, which can be written in the general form:: a(x)y' + b(x)y = c(x) where:

These equations are termed “linear” because the unknown function y and its derivative y’ appear to the first power and are not multiplied together or composed in any nonlinear way.

If the function c(x)=0 for all x in the interval of interest, the equation simplifies to: a(x)y’ + b(x)y = 0. Such an equation is called a homogeneous linear differential equation.

The Existence and Uniqueness Theorem provides crucial insight into the behavior of solutions to first-order differential equations ODEs. It states that if:

Then, the differential equation y' = f(x, y) has a unique solution to the initial value problem through the point (x0, y0), meaning that it satisfies the initial condition y(x0) = y0.

This theorem ensures that under these conditions, the solution exists and is unique near x = x0.

Matrix Methods for Inhomogeneous Systems

Inhomogeneous Systems

In the study of differential equations, many real-world problems can be modeled using systems of equations that include external inputs or forces. These are known as inhomogeneous systems. Understanding how to solve such systems is crucial in fields like engineering, physics, and applied mathematics.

We will explore how to solve a system of inhomogeneous differential equations using matrix methods.

The Inhomogeneous System

Consider the following system of first-order linear differential equations: $\begin{cases} x’ = ax + by + r_1(t) \\ y’ = cx + dy + r_2(t) \end{cases}$ where:

Matrix Representation

This system can be written in matrix form as: $\vec{X’} = A\vec{X}+\vec{r}(t)$ where:

General Solution of the Inhomogeneous System

Theorem. General Solution. The general solution to the inhomogeneous system $\vec{X'} = A\vec{X}+\vec{r}(t)$ is given by: $\vec{x_{gen}} = \vec{x_c}+\vec{x_p}$ where:

  1. $\vec{x_c}$ is the complementary (or homogeneous) solution. This is the the general solution to the associated homogeneous system, $\vec{X'} = A\vec{X}$, where $\vec{r}(t)=0$. This gives us the complementary solution $\vec{x_c}$, which is based on the eigenvalues and eigenvectors of the matrix A. Represents the natural behavior of the system without external inputs.
  2. $\vec{x_p}$ is a particular solution to the inhomogeneous system. A solution that satisfies the full inhomogeneous system, including the non-homogeneous term $\vec{r}(t)$. It accounts for the response of the system due to external inputs $\vec{r}(t)$.

Therefore, the general solution is the sum of the complementary and particular solutions: $\vec{x_{gen}} = \vec{x_c}+\vec{x_p}$.

Proof:

Let $\vec{x_c},\vec{x_p}$ be complementary and particular solution, respectively, that satisfies: $\vec{X’} = A\vec{X},\text{ and} \vec{X’} = A\vec{X}+\vec{r}(t)$

We propose that the general solution can be expressed as: $\vec{x_{gen}} = \vec{x_c}+\vec{x_p}$

$\vec{x_{gen}} = \vec{x’_c}+\vec{x’_p}$ =

Since $\vec{x_c}$​ is a solution to the inhomogeneous equation, and $\vec{x_p}$ is a solution to the homogeneous associated equation:

= $A\vec{x_c}+A\vec{x_p}+\vec{r}(t) = A(\vec{x_c}+\vec{x_p})+\vec{r}(t) = A\vec{x_{gen}}+\vec{r}(t)$ which shows that $\vec{x_{gen}}$ satisfies the inhomogeneous system. ​

Example: Mixing Problem

Consider a system involving two interconnected tanks, each with a capacity of 1 liter. The tanks are labeled Tank 1 and Tank 2 (Why Originality is King?) They are connected by pipes that allow liquid to flow between them at specified rates. We are interested in determining how the amount of salt in each tank changes over time.

As it is illustrated, 2 indicates that the liquid flows from the right tank, 2, to the left tank, 1; 3: the liquid flows from the left tank 1 to the right tank 2. Both tanks have a external inflow port to fill in the container and only the one on the right, the 2 container, have a an outflow (drain) to release its content. The flow rates are measured in liters/hour. x and y describes the amount of salt (in grams) in tank 1 and 2 respectively.

Flow Rates:

Deriving the Differential Equations

Rate of change of salt in Tank 1: $\frac{dx}{dt} = Inflow − Outflow = -3x +2y + 5e^{-t}$.

Rate of change of salt in Tank 2: $\frac{dy}{dt} = Inflow − Outflow =3x -4y + 0$.

Thus, we have the system:

$\begin{cases} x’ = -3x +2y + 5e^{-t} \\ y’ = 3x -4y + 0 \end{cases}$ where x(t) represents the amount of salt in tank 1, and y(t) represents the amount of salt in tank 2 (Refer to Figure vi for a visual representation and aid in understanding it).

Sketching Solutions of 2x2 Homogeneous Linear System

This is an inhomogeneous system. This system can be written in matrix form as: $\vec{X’} = A\vec{X} + \vec{r}(t) = (\begin{smallmatrix}-3 & 2\\ 3 & -4\end{smallmatrix})\vec{X}+(\begin{smallmatrix}5e^{-t}\\ 0\end{smallmatrix})$

Method to find a particular solution to $\vec{X’} = A\vec{X}+\vec{r}$

We can use the variation of parameters method to find a particular solution $\vec{x_p}(t)$ to the inhomogeneous system.

To find a particular solution to the inhomogeneous system, we assume that the particular solution has the form: $\vec{x_p} = v_1(t)\vec{x_1}+v_2(t)\vec{x_2}$ where $\vec{x_1}$ and $\vec{x_2}$ are the independent solutions of the homogeneous system (the eigenvectors), and v1(t) and v2(t) are unknown functions to be determined.

Notice that $(\begin{smallmatrix}x_1 & x_2\\ y_1 & y_2\end{smallmatrix})(\begin{smallmatrix}v_1\\ v_2\end{smallmatrix})↭[\text{We can write this as:}] \vec{x_p} = X\vec{v}$ where X is the fundamental matrix formed by the columns $\vec{x_1}$ and $\vec{x_2}$.

Now, differentiate $\vec{x_p}(t)$: $X’(t)\vec{v}(t)+X(t)\vec{v’}(t)$

Substituting into the original system, we get:

  1. Right-side: [Since X’(t) = AX(t) because each column of X(t) satisfies the homogeneous equation] $\vec{x’_p}(t) = X’(t)\vec{v}(t) + X(t)\vec{v’}(t) = AX(t)\vec{v}(t) + X(t)\vec{v’}(t)$
  2. Left-side: $A\vec{x_p} + \vec{r}(t) = AX(t)\vec{v} + \vec{r}(t)$

Subtract $AX(t)\vec{v}(t)$ from both sides: $X\vec{v’} = \vec{r} ⇒[\text{We solve for } \vec{v’}] \vec{v’} = X^{-1}(t)\vec{r}$ where X-1 is the inverse of the fundamental matrix X(t), which exists because the determinant of X(t) is non zero (the solutions $\vec{x_1}$ and $\vec{x_2}$ are linearly independent).

To find $\vec{v}(t)$, we integrate: $\vec{v}(t) = \int X^{-1}\vec{r}dt$.

Finally, the particular solution is: $\vec{x_p} = X\vec{v} = X \int X^{-1}\vec{r}dt$. We don’t need to add constants of integration because they are already included in the complementary solution.

Problem Recap

We are given the system of differential equations representing the amount of salt in two connected tanks: $\begin{cases} x’ = -3x +2y + 5e^{-t} \\ y’ = 3x -4y + 0 \end{cases}$

This system can be written in matrix form as: $\vec{X’} = A\vec{X} + \vec{r}(t)$ where:

$A = (\begin{smallmatrix}-3 & 2\\ 3 & -4\end{smallmatrix}), \vec{r}(t) = (\begin{smallmatrix}5e^{-t}\\ 0\end{smallmatrix})$

Step 1. Solve the Homogeneous System

To solve this, we need to find the eigenvalues and eigenvectors of the matrix A = $(\begin{smallmatrix}-3 & 2\\ 3 & -4\end{smallmatrix})$

The characteristic equation is obtained from: det(A -λI) = 0 where I is the identity matrix. So:

$det(\begin{smallmatrix}-3-λ & 2\\ 3 & -4-λ\end{smallmatrix}) = 0 ↭[\text{Expanding the determinant:}] (−3−λ)(−4−λ)−(2)(3)=0 ↭ λ^2+7λ +6 = 0$

Using the quadratic formula $λ = \frac{-7±\sqrt{49-24}}{2·1} = \frac{-7±\sqrt{25}}{2} = \frac{-7±5}{2}$. Thus, the eigenvalues are: λ1=-1, λ2 = -6.

Eigenvectors: For λ1=-1, we solve $(A-λ_1I)\vec{v_1} = 0 ↭ A + I = 0 ↭ (\begin{smallmatrix}-2 & 2\\ 3 & -3\end{smallmatrix})(\begin{smallmatrix}v_{1x}\\ v_{1y}\end{smallmatrix}) = (\begin{smallmatrix} 0 \\ 0 \end{smallmatrix})$

Set up the homogeneous system: $\begin{cases} -2v_{1x} +2v_{1y} = 0 \\ -3v_{1x} -3v_{1y} = 0 \end{cases}$

From the first row: $-2v_{1x} +2v_{1y} = 0⇒v_{1x} = v_{2x}$. Thus, an eigenvector for λ1=-1 is $\vec{v_1} = (\begin{smallmatrix}1\\ 1\end{smallmatrix})$

For λ2=-6, we solve $(A-λ_1I)\vec{v_2} = 0 ↭ (\begin{smallmatrix}3 & 2\\ 3 & 2\end{smallmatrix})(\begin{smallmatrix}v_{2x}\\ v_{2y}\end{smallmatrix}) = (\begin{smallmatrix} 0 \\ 0 \end{smallmatrix})$

Set up the homogeneous system: $\begin{cases} 3v_{2x} +2v_{2y} = 0 \\ 3v_{2x} +2v_{2y} = 0 \end{cases}$

From the first row: $3v_{2x} +2v_{2y} = 0⇒v_{2x} = \frac{-2}{3}v_{2y}$. Thus, an eigenvector for λ2=-6 is $\vec{v_2} = (\begin{smallmatrix}-2\\ 3\end{smallmatrix})$

The general solution to the homogeneous system is: $\vec{x_c} = c_1e^{-t}(\begin{smallmatrix}1\\ 1\end{smallmatrix}) + c_2e^{-6t}(\begin{smallmatrix}-2\\ 3\end{smallmatrix})$. This represents the complementary solution.

Step 2. Find the particular solution using variation of parameters.

We assume the particular solution is of the form: $\vec{x_p} = v_1(t)\vec{x_1}+v_2(t)\vec{x_2}$ where $\vec{x_1} = (\begin{smallmatrix}e^{-t}\\ e^{-t}\end{smallmatrix})$ and $\vec{x_2} = (\begin{smallmatrix}-2e^{-6t}\\ 3e^{-6t}\end{smallmatrix})$ are the solutions to the homogeneous system, $\vec{v} = (\begin{smallmatrix}v_1(t)\\ v_2(t)\end{smallmatrix})$

Thus, $\vec{x_p}(t) = (\begin{smallmatrix}e^{-t} & -2e^{-6t}\\ e^{-t} & 3e^{-6t}\end{smallmatrix})(\begin{smallmatrix}v_1(t)\\ v_2(t)\end{smallmatrix}) = X(\begin{smallmatrix}v_1(t)\\ v_2(t)\end{smallmatrix}) = X(t)\vec{v}(t)$

Differentiate $\vec{x_p}(t): \vec{x_p’}(t) = X’(t)\vec{v}(t) + X(t)\vec{v’}(t)$

Since each column of X(t) is a solution to the homogeneous system, we have X’(t) = AX(t). Therefore, $\vec{x_p’}(t) = X’(t)\vec{v}(t) + X(t)\vec{v’}(t) = AX(t)\vec{v}(t) + X(t)\vec{v’}(t)$

Substitute $\vec{x_p}(t), \vec{x_p’}(t)$ into the nonhomogeneous equation: $AX(t)\vec{v}(t) + X(t)\vec{v’}(t) = AX(t)\vec{v}(t) + \vec{r}(t) ↭ X(t)\vec{v’}(t) = \vec{r}(t) ↭ \vec{v’}(t) = X^{-1}(t)\vec{r}(t)$

Compute X-1(t)

det(X(t)) = $e^{-t}·3e^{-6t}+2e^{-6t}·e^{-t} = 3e^{-7t}+2e^{-7t} = 5e^{-7t}$

$X^{-1}(t) = \frac{1}{det(X(t))}(\begin{smallmatrix}x_{22}(t) & -x_{12}(t)\\ -x_{21}(t) & x_{11}(t)\end{smallmatrix}) = \frac{1}{5e^{-7t}} (\begin{smallmatrix}3e^{-6t} & 2e^{-6t}\\ -e^{-t} & e^{-t}\end{smallmatrix})$

Compute $\vec{v’}(t) = X^{-1}(t)\vec{r}(t) = \frac{1}{5e^{-7t}} (\begin{smallmatrix}3e^{-6t} & 2e^{-6t}\\ -e^{-t} & e^{-t}\end{smallmatrix})(\begin{smallmatrix}5e^{-t}\\ 0\end{smallmatrix})$

First component: $v_1(t) = \int v_1’(t)dt = \int \frac{1}{5e^{-7t}}·3e^{-6t}·5e^{-t}dt = 3 \int dt = 3t + C_1$

Second component: $v_2(t) = \int v_2’(t)dt = \int \frac{1}{5e^{-7t}}·(-e^{-t})·5e^{-t}dt = \int -e^{5t}dt = \frac{-1}{5}e^{5t}+ C_2$. We can set C1 = C2 = 0 since any constants will be absorbed into the homogeneous solution.

Thus, the particular solution is: $\vec{x_p} = X(t)\vec{v}(t) = (\begin{smallmatrix}e^{-t} & -2e^{-6t}\\ e^{-t} & 3e^{-6t}\end{smallmatrix})(\begin{smallmatrix}3t\\ \frac{-1}{5}e^{5t}\end{smallmatrix}) = (\begin{smallmatrix}3te^{-t}+(-2e^{-6t})(\frac{-1}{5}e^{5t})\\ 3te^{-t}+3e^{-6t}(\frac{-1}{5}e^{5t})\end{smallmatrix})= (\begin{smallmatrix}3te^{-t}+\frac{2}{5}e^{-t}\\ 3te^{-t}+\frac{-3}{5}e^{-t}\end{smallmatrix}) = e^{-t} (\begin{smallmatrix}3t+\frac{2}{5}\\ 3t+\frac{-3}{5}\end{smallmatrix})$

Step 3: General Solution

The general solution to the inhomogeneous system is the sum of the complementary and particular solutions:

$\vec{x_{gen}} = \vec{x_c} + \vec{x_p} = c_1e^{-t}(\begin{smallmatrix}1\\ 1\end{smallmatrix}) + c_2e^{-6t}(\begin{smallmatrix}-2\\ 3\end{smallmatrix}) + e^{-t} (\begin{smallmatrix}3t+\frac{2}{5}\\ 3t+\frac{-3}{5}\end{smallmatrix})= e^{-t}(\begin{smallmatrix}c_1+3t+\frac{2}{5}\\ c_1+3t+\frac{-3}{5}\end{smallmatrix})+ c_2e^{-6t}(\begin{smallmatrix}-2\\ 3\end{smallmatrix})$

The general solution provides the amounts of salt x(t) and y(t) in tanks 1 and 2 at time t, with constant c1 and c2 determined by initial conditions.

Step 1: Write the System in Matrix Form

We can express the system in matrix form as: $\vec{X’} = A\vec{X} + \vec{r}(t)$ where:

$\vec{X} = (\begin{smallmatrix}x\\ y\end{smallmatrix}), A = (\begin{smallmatrix}-2 & 1\\ 1 & -2\end{smallmatrix}), \vec{r}(t) = (\begin{smallmatrix}0\\ 3t\end{smallmatrix})$

Step 2. Solve the Homogeneous System

Compute the eigenvalues λ by solving the characteristic equation: det(A −λI) = 0 ↭ $det(\begin{smallmatrix}-2-λ & 1\\ 1 & -2-λ\end{smallmatrix}) = 0 ↭ (λ+2)^2-1 = 0 ↭ (λ+2−1)(λ+2+1)=(λ+1)(λ+3)=0.$.

Therefore, the eigenvalues are: λ1 = -1, λ2 = -3.

Find the Eigenvectors Corresponding to Each Eigenvalue: For λ1=-1, we solve $(A-λ_1I)\vec{v_1} = \vec{0} ↭ A + I\vec{v_1} = \vec{0} ↭ (\begin{smallmatrix}-1 & 1\\ 1 & -1\end{smallmatrix})(\begin{smallmatrix}v_{1x}\\ v_{1y}\end{smallmatrix}) = (\begin{smallmatrix} 0 \\ 0 \end{smallmatrix})$

Set up the homogeneous system: $\begin{cases} -v_{1x} +v_{1y} = 0 \\ v_{1x} -v_{1y} = 0 \end{cases}$

Form the first equation: $-v_{1x} +v_{1y} = 0 ⇒ v_{1x} = v_{1y} =[\text{Simplicity}] 1$

$v_1 = (\begin{smallmatrix}1\\1\end{smallmatrix})$

For λ2=-3, we solve $(A-λ_2I)\vec{v_2} = \vec{0} ↭ A + 3I\vec{v_2} = \vec{0} ↭ (\begin{smallmatrix}1 & 1\\ 1 & 1\end{smallmatrix})(\begin{smallmatrix}v_{2x}\\ v_{2y}\end{smallmatrix}) = (\begin{smallmatrix} 0 \\ 0 \end{smallmatrix})$

Set up the homogeneous system: $\begin{cases} v_{2x} +v_{2y} = 0 \\ v_{2y} + v_{1y} = 0 \end{cases}$

Form the first equation: $v_{2x} +v_{2y} = 0 ⇒ v_{2y} = -v_{2y}, v_{2x}= [\text{We choose for simplicity}] 1 ⇒ v_{2y} = -1$

$v_2 = (\begin{smallmatrix}1\\ -1 \end{smallmatrix})$

Write the General Solution to the Homogeneous System

The homogeneous system has a general solution, $\vec{X_h}(t) = c_1e^{λ_1t}\vec{v_1} + c_2e^{λ_2t}\vec{v_2} = c_1e^{-t}(\begin{smallmatrix}1\\ 1\end{smallmatrix}) + c_2e^{-3t}(\begin{smallmatrix}1\\ -1\end{smallmatrix})$

Thus, the fundamental matrix X(t) is: $X(t) = (\begin{smallmatrix}x_1^{1}(t) & x_2^{1}(t)\\ x_1^{2}(t) & x_2{2}(t)\end{smallmatrix}) = (\begin{smallmatrix}e^{-t} & e^{-3t}\\ e^{-t} & -e^{-3t}\end{smallmatrix})$

Step 3. Find the particular solution using variation of parameters.

We assume the particular solution is of the form: $\vec{x_p} = v_1(t)\vec{x_1}(t)+v_2(t)\vec{x_2}(t)$ where $\vec{x_1} = (\begin{smallmatrix}e^{-t}\\ e^{-t}\end{smallmatrix})$ and $\vec{x_2} = (\begin{smallmatrix}e^{-3t}\\ -e^{-3t}\end{smallmatrix})$ are the solutions to the homogeneous system.

$\vec{x_p} = (\begin{smallmatrix}e^{-t} & e^{-3t}\\ e^{-t} & -e^{-3t}\end{smallmatrix})(\begin{smallmatrix}v_1(t)\\ v_2(t)\end{smallmatrix}) = X\vec{v}$ where X is the fundamental matrix formed by the columns $\vec{x_1}$ and $\vec{x_2}$

We know (Method to find a particular solution to $\vec{X’} = A\vec{X} + \vec{r}$): $\vec{v’} = X^{-1}·\vec{r}$

Compute X-1(t)

det(X(t)) = $e^{-t}·(-e^{-3t}) -e^{-t}·e^{-3t} = -e^{-4t}-e^{-4t} = -2e^{-4t}$

Since det(X(t)) ≠ 0 for all t, X(t) is invertible.

For a 2 x 2 matrix X = $(\begin{smallmatrix}a & b\\ c & d\end{smallmatrix})$, the inverse is $\frac{1}{det(X)}(\begin{smallmatrix}d & -b\\ -c & a\end{smallmatrix})$

Thus, $X^{-1}(t) = \frac{1}{-2e^{-4t}}(\begin{smallmatrix}-e^{-3t} & -e^{-3t}\\ -e^{-t} & e^{-t}\end{smallmatrix})$

Compute $\vec{v’} = X^{-1}·\vec{r} = \frac{1}{-2e^{-4t}}(\begin{smallmatrix}-e^{-3t} & -e^{-3t}\\ -e^{-t} & e^{-t}\end{smallmatrix})·(\begin{smallmatrix}0\\ 3t\end{smallmatrix}) = \frac{1}{-2e^{-4t}}(\begin{smallmatrix}-3te^{-3t}\\ 3te^{-t}\end{smallmatrix})$

$v_1(t) = \int v_1’(t) = \int \frac{-3te^{-3t}}{-2e^{-4t}}dt = \int \frac{3te^{t}}{2}dt = \frac{3}{2} \int te^tdt$

Use integration by parts u = t, dv = etdt. Then du = dt, v = et.

$\int te^tdt = te^t -\int e^tdt = te^t-e^t + C$

$v_1(t) = \frac{3}{2}\int te^tdt = \frac{3}{2}(te^t-e^t)$. We can set the constant C = 0 because constants are accounted for in the homogeneous solution.

$v_2(t) = \int v_2’(t) = \int \frac{3te^{-t}}{-2e^{-4t}}dt = \int \frac{-3te^{3t}}{2}dt = \frac{-3}{2} \int te^{3t}dt$

Use integration by parts u = t, dv = e3tdt. Then du = dt, v = $\frac{e^{3t}}{3}$

$\int te^{3t}dt = t\frac{e^{3t}}{3} -\int \frac{e^{3t}}{3}dt = \frac{te^{3t}}{3} -\frac{e^{3t}}{9} + C$

$v_2(t) = \frac{-3}{2} \int te^{3t}dt = \frac{-3}{2}(\frac{te^{3t}}{3} -\frac{e^{3t}}{9}) = -(\frac{te^{3t}}{2}-\frac{e^{3t}}{6})$. We can set the constant C = 0 because constants are accounted for in the homogeneous solution.

Construct the Particular Solution

$\vec{x_p} = X(t)\vec{v}(t) = (\begin{smallmatrix}e^{-t} & e^{-3t}\\ e^{-t} & -e^{-3t}\end{smallmatrix})(\begin{smallmatrix}\frac{3}{2}(te^t-e^t)\\ -(\frac{te^{3t}}{2}-\frac{e^{3t}}{6})\end{smallmatrix})$

First component: $e^{-t}·\frac{3}{2}(te^t-e^t) + e^{-3t}·(-(\frac{te^{3t}}{2}-\frac{e^{3t}}{6})) = \frac{3}{2}(t-1)+ (\frac{-t}{2}+\frac{1}{6}) = \frac{9t-9-3t+1}{6} = \frac{6t-8}{6} = t-\frac{4}{3}$

Second component: $e^{-t}·\frac{3}{2}(te^t-e^t)+e^{-3t}·(\frac{te^{3t}}{2}-\frac{e^{3t}}{6}) = \frac{3}{2}(t-1)+(\frac{1}{2}t-\frac{1}{6}) = \frac{9t-9+3t-1}{6} = \frac{12t-10}{6} = 2t -\frac{5}{3}$

Step 4. Write the General Solution

The general solution $\vec{x}(t) = \vec{x_h}(t)+\vec{x_p}(t) = c_1e^{-t}(\begin{smallmatrix}1\\ 1\end{smallmatrix}) + c_2e^{-3t}(\begin{smallmatrix}1\\ -1\end{smallmatrix}) + (\begin{smallmatrix}t-\frac{4}{3}\\ 2t -\frac{5}{3}\end{smallmatrix})$. This is the general solution to the original system.

Alternative Method: Matching the Structure of the Nonhomogeneous Term

We aim to find a particular solution $\vec{x_p}(t)$ that mimics the form of the nonhomogeneous term $\vec{r}(t) = (\begin{smallmatrix}0\\ 3t\end{smallmatrix})$ which is linear in t.

Assume a particular solution $\vec{x_p}(t) = \vec{a}t + \vec{b}$, appropriate for a linear nonhomogeneous term, where $\vec{a}$ and $\vec{b}$ are constant vectors to be determined.

$x’_p(t) =[\text{Since a and b are constants:}] \vec{a} =[\text{Substitute into the Differential Equation}] A(\vec{a}t + \vec{b}) + \vec{r}(t) = A(\vec{a}t + \vec{b}) + t(\begin{smallmatrix}0\\ 3\end{smallmatrix}) ↭ \vec{a} = A(\vec{a}t + \vec{b}) + t(\begin{smallmatrix}0\\ 3\end{smallmatrix})$

Since $\vec{a}$ is constant, group like terms on both sides.

$\begin{cases} A\vec{b} = \vec{a} \\ A\vec{a} + (\begin{smallmatrix}0\\ 3\end{smallmatrix}) = 0 \end{cases}$

$A\vec{a} + (\begin{smallmatrix}0\\ 3\end{smallmatrix}) = 0 ↭ (\begin{smallmatrix}-2 & 1\\ 1 & -2\end{smallmatrix})\vec{a} = (\begin{smallmatrix}0\\ -3\end{smallmatrix}) ↭ \vec{a} = A^{-1}(\begin{smallmatrix}0\\ -3\end{smallmatrix}) = \frac{1}{3}(\begin{smallmatrix}-2 & -1\\ -1 & -2\end{smallmatrix})(\begin{smallmatrix}0\\ -3\end{smallmatrix}) = (\begin{smallmatrix}1\\ 2\end{smallmatrix})$

$A\vec{b} = \vec{a} ~(ii) ⇒\vec{b} = A^{-1}\vec{a} = \frac{1}{3}(\begin{smallmatrix} -2 & -1 \\ -1 & -2 \end{smallmatrix})(\begin{smallmatrix}1\\ 2\end{smallmatrix}) = \frac{1}{3}(\begin{smallmatrix}-4\\ -5\end{smallmatrix})$

xp(t) $= \vec{a}t + \vec{b} = (\begin{smallmatrix}1\\ 2\end{smallmatrix})t + (\begin{smallmatrix} \frac{-4}{3} \\ \frac{-5}{3} \end{smallmatrix})$. This particular solution matches the one found earlier.

Bibliography

This content is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License and is based on MIT OpenCourseWare [18.01 Single Variable Calculus, Fall 2007].
  1. NPTEL-NOC IITM, Introduction to Galois Theory.
  2. Algebra, Second Edition, by Michael Artin.
  3. LibreTexts, Calculus and Calculus 3e (Apex). Abstract and Geometric Algebra, Abstract Algebra: Theory and Applications (Judson).
  4. Field and Galois Theory, by Patrick Morandi. Springer.
  5. Michael Penn, and MathMajor.
  6. Contemporary Abstract Algebra, Joseph, A. Gallian.
  7. YouTube’s Andrew Misseldine: Calculus. College Algebra and Abstract Algebra.
  8. MIT OpenCourseWare [18.03 Differential Equations, Spring 2006], YouTube by MIT OpenCourseWare.
  9. Calculus Early Transcendentals: Differential & Multi-Variable Calculus for Social Sciences.
Bitcoin donation

JustToThePoint Copyright © 2011 - 2025 Anawim. ALL RIGHTS RESERVED. Bilingual e-books, articles, and videos to help your child and your entire family succeed, develop a healthy lifestyle, and have a lot of fun. Social Issues, Join us.

This website uses cookies to improve your navigation experience.
By continuing, you are consenting to our use of cookies, in accordance with our Cookies Policy and Website Terms and Conditions of use.