The length of wire is 1. Let x be the part that is bent into a circle x = 2πr, then 4s = 1-x where s is the square’s side ⇒ s = $\frac{1-x}{4}$. Besides, x = 2πr ⇒ r = $\frac{x}{2π}$. The diagram is shown in Figure 1.a.
$A = π\frac{x^{2}}{4π^{2}}+\frac{(1-x)^{2}}{4^{2}} = \frac{4x^{2}}{4^{2}π}+\frac{π(1-x)^{2}}{4^{2}π} = \frac{4x^{2}+π(1-x)^{2}}{4^{2}π}$
$A = \frac{4x^{2}+π(1-x)^{2}}{4^{2}π} = \frac{4x^{2}+ π -2πx +πx^{2}}{4^{2}π} = \frac{(π+4)x^{2} -2πx + π}{4^{2}π}$
$A’=\frac{1}{4^{2}π}(2(π+4)x -2π)=\frac{1}{8π}((π+4)x -π)$. A’=0 ⇒ x=π⁄π+4
$\frac{s}{r} = \frac{\frac{1-x}{4}}{\frac{x}{2π}} = \frac{(1-x)2π}{4x} = \frac{(1-x)π}{2x}= \frac{(1-\frac{π}{π+4})π}{2\frac{π}{π+4}} = \frac{(\frac{π+4-π}{π+4})π}{2\frac{π}{π+4}}=\frac{1}{2}$
In other words, if the radius of the circle is half the side of the square, the sum of both areas is the least.
The length of wire is 1, and therefore their sides are: $\frac{x}{4}, \frac{1-x}{4}$. The diagram is shown in Figure 1.a.
A = $(\frac{x}{4})^{2}+(\frac{1-x}{4})^{2} = \frac{2x^{2}-2x+1}{16}$
A’ = $\frac{4x-2}{16}$. A’=0 ⇒ x=1⁄2.
V = x2y = 42,592 ⇒ y = $\frac{V}{x^{2}} = \frac{42,592}{x^{2}}$
The diagram is shown in Figure 1.c.
A = x2+4xy = x2+442,592⁄x = x2+170,368⁄x
A’ = 2x -170,368⁄x2. A’ = 0 ⇒ 0 = $\frac{2x^{3}-170,368}{x^{2}}$ ⇒ $x = \sqrt[3]{\frac{170,368}{2}}=44$
A’’ = 2 + 2*170,368⁄x3 >0 ⇒ Concave upward.
V = x2y (fixed) ⇒ y = $\frac{V}{x^{2}}$
A = x2+4xy = x2+4V⁄x
A’ = 2x -4V⁄x2. A’ = 0 ⇒ 0 = $\frac{2x^{3}-4V}{x^{2}}$ ⇒ $x = \sqrt[3]{2V}$
Futhermore, $\frac{x}{y}=\frac{2^{\frac{1}{3}}V^{\frac{1}{3}}}{2^{\frac{-2}{3}}V^{\frac{1}{3}}} = 2.$
Goal: $\frac{ds}{dt}$?
$\frac{dy}{dt}=-60mph, \frac{dx}{dt}=-30mph $.
The diagram is shown in Figure 1.e.
$x^{2} + y^{2}=s^{2} ⇒ 0.6^{2} + 0.8^{2}=s^{2} ⇒ s=1$
$x^{2} + y^{2}=s^{2} ⇒ 2x\frac{dx}{dt}+2y\frac{dy}{dt}=2s\frac{ds}{dt} ⇒ 2·0.6·(-30)+2·0.8·(-60)=2s\frac{ds}{dt} ⇒ \frac{ds}{dt}=-66mph.$
Two triangles are similar when they have equal angles and proportional sides, and therefore $\frac{r}{h} = \frac{4}{10}$ ⇒ r = $\frac{2h}{5}$.
The diagram is shown in Figure 1.f.
$V = \frac{1}{3}·base·height=\frac{1}{3}·\pi·r^{2}·h = \frac{4\pi}{75}·h^{3}$
$\frac{dV}{dt}=2$
Goal: h = 5, $\frac{dh}{dt}?$
$\frac{dV}{dt}=2=\frac{4\pi}{75}·3h^{2}·\frac{dh}{dt} = \frac{4\pi}{25}·5^{2}·\frac{dh}{dt} ⇒ \frac{dh}{dt} = \frac{1}{2\pi}$ft/sec.
We know that tan(θ)=h⁄2 and $\frac{dθ}{dt} = 5° per second$
Goal: $\frac{dh}{dt}~ when~ θ=50°$. The diagram is shown in Figure 2.c.
$tan(θ)=\frac{h}{2}⇒sec^{2}θ\frac{dθ}{dt} = \frac{1}{2}\frac{dh}{dt}⇒\frac{dh}{dt}=2sec^{2}(50°·\frac{pi}{180})·5°·\frac{pi}{180} ≈ 0.422mps ≈ 1520.7mph$ by 0.422·3.600
We know that x2+302=D2 (⇒ x = 40) and $\frac{dD}{dt}=-80.$ Goal: $\frac{dx}{dt}?$
The diagram is shown in Figure 2.a.
$2x\frac{dx}{dt} = 2D\frac{dD}{dt}$
Now, we can insert the values in the equation, $2x\frac{dx}{dt} = 2D\frac{dD}{dt} ⇒ 2·40·\frac{dx}{dt} = 2·50·(-80) ⇒ \frac{dx}{dt} = -100 ft/sec.$
|-100 ft/sec| > 95 ft/sec = 65mph. Yes, you are speeding, but not for much.
We know that 32 + b2 = c2, $\frac{db}{dt}=480$
480 miles ———- 60*60 seconds
b miles ———— 30 seconds
b = $\frac{480·30}{60·60} = 4 miles$ ⇒ c = 5.
The diagram is shown in Figure 2.b.
2b$\frac{db}{dt} = 2c\frac{dc}{dt}$. Now, we can insert the values in the equation, $2·4·480 = 2·5·\frac{dc}{dt}⇒~ \frac{dc}{dt}=384mph$
It is a root-finding algorithm which produces successively better approximations to the root or zeroes of a real-valued function. The idea is to start with an initial guess, e.g., x0 = 2. Then, we approximate the function by its tangent line, and calculate the x-intercept of this tangent line. This x-intercept is our new guess, say x1, and it will typically be a better approximation to the original function's root than the first guess. 2.d.
The tangent line’s formula is: $y-y_0=m(x-x_0)$
x1 is the x-intercept, so $0-y_0=m(x_1-x_0) ⇒ x_1 = x_0 -\frac{y_0}{m} = x_0 -\frac{f(x_0)}{f’(x_0)}$
The process is repeated as: $x_{n+1} = x_n - \frac{f(x_n)}{f’(x_n)}$
Example. Let’s approximate $\sqrt[7]{1000}$. It is the same as trying to find the root of f(x)=x7 - 1000.
A reasonably good guess is x0=3. f’(x)=7x6, $x_1 = x_0 -\frac{f(x_0)}{f’(x_0)} = 3 - \frac{3^{7}-1000}{7·3^{6}}≈2.76739173$
$x_2 = x_1 -\frac{f(x_1)}{f’(x_1)} = 2.76739173 - \frac{2.76739173^{7}-1000}{7·2.76739173^{6}}≈2.69008741$
$x_3 = x_2 -\frac{f(x_2)}{f’(x_2)} = 2.69008741 - \frac{2.69008741^{7}-1000}{7·2.69008741^{6}}≈2.68275645$. Google’s search engine returns 2.68269579528 ($\sqrt[7]{1000}$).