JustToThePoint English Website Version
JustToThePoint en español

Circle Equation in the Complex Plane

When the world says, ‘Give up,’ hope whispers, ‘Try it one more time’, Lyndon B. Johnson

VPN

Circle Equation in the Complex Plane

The equation |z - a| = r defines a circle in the complex plane(the distance between any point z on the circle and the center a is equal to the radius r) where:

The absolute value |z - a| represents the distance between points z and a in the complex plane. This distance formula is:

|z - a| = |x + yi - (h + ki)| = |(x - h) + (y - k)i| = $\sqrt{(x - h)² + (y - k)²}$

When this distance equals r, we get the familiar circle equation: (x - h)² + (y - k)² = r².

Special Cases

Interior/exterior of circles & Annular regions:

Product of Two Complex Numbers in Polar Form

Let $z_1 = r_1(cos(\theta_1) + isin(\theta_1)), z_2 = r_2(cos(\theta_2) + isin(\theta_2))$.

Then, $z_1 · z_2 = r_1(cos(\theta_1) + isin(\theta_1))·r_2(cos(\theta_2) + isin(\theta_2)) = r_1r_2[cos(\theta_1)cos(\theta_2)-sin(\theta_1)sin(\theta_2) + i(sin(\theta_1)cos(\theta_2)+cos(\theta_1)sin(\theta_2))]$ =[The sum formulas for sine and cosine are: sin(α + β) = sin α cos β + cos α sin β and cos(α + β) = cos α cos β - sin α sin β] = $r_1r_2(cos(\theta_1 + \theta_2) + isin(\theta_1+\theta_2))$

In words, the modulus of the product is the product of the moduli and the argument of the product is the sum of the arguments (Figure 1).

Stereographic projection

De Moivre’s Theorem

In particular, $z = r(cos(\theta) + isin(\theta)), z² = r²(cos(2\theta)+isin(2\theta)).$ Let’s prove that $z^n = r^n(cos(n\theta)+isin(n\theta))$

Base cases: It is obviously a true statement for n = 0 ($z^0 = 1 = r^0(cos(0) + isin(0))$) and 1.

Inductive step: Assume that it holds for n = k, $z^k = r^k(cos(k\theta)+isin(k\theta)) \leadsto z^{k+1} = z^k·z = r^k(cos(k\theta)+isin(k\theta))·r(cos(\theta)+isin(\theta)) = r^{k+1}[cos(k\theta)cos(\theta)-sin(k\theta)sin(\theta) + i(cos(k\theta)sin(\theta) + sin(k\theta)cos(\theta))]$ =[The sum formulas for sine and cosine are: sin(α + β) = sin α cos β + cos α sin β and cos(α + β) = cos α cos β - sin α sin β] = $r^{k+1}(cos((k+1)\theta) + i(sin(k+1))\theta).$ ∎

Negative exponents, n = -1, $z^{-1}=\frac{1}{z} = \frac{1}{r(cos(\theta)+isin(\theta))}= \frac{1}{r(cos(\theta)+isin(\theta))}\frac{cos(\theta)-isin(\theta)}{cos(\theta)-isin(\theta)} = \frac{cos(\theta)-isin(\theta)}{r} = r^{-1}(cos(\theta)-isin(\theta)) = r^{-1}(cos(-\theta)+isin(-\theta))$

$z^{-n} = (z^n)^{-1} = \frac{1}{z^n} =[\text{By previous demonstration, the equality holds } \forall n \in \mathbb{N}] \frac{1}{r^n(cos(n\theta)+i(sin(n\theta)))} = r^{-n}\frac{1}{cos(n\theta)+i(sin(n\theta))}\frac{cos(n\theta)-i(sin(n\theta))}{cos(n\theta)-i(sin(n\theta))} = r^{-n}\big(cos(n\theta)-i(sin(n\theta))\big) = r^{-n}\big(cos(-n\theta)+i(sin(-n\theta))\big)$

De Moivre's Theorem. $z^n = r^n(cos(n\theta)+isin(n\theta))$ and the equality holds $\forall n \in \mathbb{Z}.$

Alternatively, given any arbitrary real number x and a integer n, (cos(x)+isin(x))n = cos(nx) + isin(nx). One can derive de Moivre’s formula using Euler’s formula and the exponential law for integer powers, (eix)n = einx.

nth Roots of a Complex Number

To solve $w^n = z = re^{i\theta}$, write w = $r^{\frac{1}{n}}e^{i\frac{\theta + 2\pi·k}{n}}$, k = 0, 1, ···, n - 1.

Example: Find the fourth roots of z = -3

z = -3 =[Write −3 in polar form] 3(cos(π)+isin(π)) = 3(cos(2kπ + π)+isin(2kπ + π)) = 3e.

We are interested on calculating $w=z^{\frac{1}{4}} \leadsto w = 3^{\frac{1}{4}}e^{\frac{1}{4}} =[\text{The 4th roots are:}] \sqrt[4]{3} \big(cos(\frac{2k\pi +\pi}{4})+isin(\frac{2k\pi + \pi}{4})\big),$ k = 0, 1, 2, 3.

For k = 0, 1, 2, and 3, we get all the possible values of w, that is, $w = 3^{\frac{1}{4}}(\plusmn \frac{1}{\sqrt{2}} \plusmn \frac{i}{\sqrt{2}})$.

Stereographic projection

Consider the unit sphere in ℝ³, centered at the origin. It consists of all points (x, y, z) satisfying x² + y² + z² = 1, S = {(x, y, z): x² + y² + z² = 1}. The north pole of the sphere is the point N = (0, 0, 1). This set intersects the x-y plane (z = 0) in the unit circle: z = 0, x² + y² = 1 (S).

Defining the Stereographic Projection

The stereographic projection maps a complex point z identified with the plane z = 0 in ℝ3, (x, y, 0) to a point Z = (x₁, y₁, z₁) on the unit sphere S by drawing a straight line (a ray) from the north pole N through z until it intersects S. (Figure 2). That ray strikes S at exactly one other point Z = (x1, y1, z1). The map π: ℂ→S∖{N}, z = (x, y) ⟼Z = (x1, y1, z1) is the stereographic projection. Stereographic projection

Parametrizing the Ray

The line connecting N(0, 0, 1) and z(x, y, 0) can be parameterized as: Z(t) = t(N) + (1 - t)·(x, y, 0) = t(0, 0, 1) + (1-t)(x, y, 0), t ∈ ℝ ↭ $\big((1-t)x, (1-t)y, t\big)$. To find the intersection point, we substitute the coordinates of Z(t) into the equation of the sphere: (1-t)²x² + (1-t)y² + t² = 1 ↭ (1-t)²(x²+y²) + t² = 1 ↭ (1-t)²|z|² + t² = 1.

Rearrange to a quadratic in t. ∣z∣²(1 -2t + t²) + t² - 1 = 0 ↭ t²(|z|²+1) -2t|z|² + |z|² - 1 = 0. Using the quadratic equation, we get $t = \frac{2|z|² \plusmn \sqrt{4|z|⁴-4(|z|²+1)(|z|² - 1)}}{2(|z|²+1)} = \frac{2|z|² \plusmn \sqrt{4z⁴-4z⁴+ 4}}{2(|z|²+1)} = \frac{2|z|² \plusmn 2}{2(|z|²+1)}$

We have two solutions for t.

Coordinates on the Sphere

Substitute into Z(t) = ((1−t)x, (1−t)y, t). We obtain the projection:

π(z) = (x1, y1, z1) = $(\frac{2x}{|z|²+1}, \frac{2y}{|z|²+1}, \frac{|z|²-1}{|z|²+1})$ =[Equivalently, writing z = x +iy and $\bar z$ = x −iy:] $(\frac{z + \bar z}{|z|²+1}, \frac{-i(z -\bar z)}{|z|²+1}, \frac{|z²|-1}{|z|²+1})$

Inverse Projection

Given a point (x₁, y₁, z₁) on the sphere S (other than the north pole with z₁ ≠ 1), we can find the corresponding complex number z in the plane: If we are given a point ($Z \ne (0, 0, 1) \leadsto z_1 \ne 1$) on S, then z on ℂ can be found $z = \frac{x_1+iy_1}{1-z_1} \in ℂ$. Notice that $\frac{x_1 + iy_1}{1-z_1} = \frac{\frac{z + \bar z}{|z|²+1}+\frac{z -\bar z}{|z|²+1}}{1-\frac{|z²|-1}{|z|²+1}} = (\frac{z + \bar z}{|z|²+1} +\frac{z -\bar z}{|z|²+1})·\frac{1}{\frac{2}{|z|²+1}} = \frac{2z}{|z|²+1}·\frac{|z|²+1}{2} = z$. This check shows the formula is exactly the inverse of the forward stereographic projection.

The stereographic projection establishes a one-to-one correspondence between the complex plane ℂ and the unit sphere S excluding the north pole N. To complete the correspondence, we add a point at infinity (∞) to ℂ and map it to the north pole N. This extended complex plane ℂ ∪ {∞} is called the Riemann sphere.

In the extended complex plane (the Riemann sphere), we declare π−1(N) = ∞. The resulting bijection ℂ ∪ {∞} ≅ S is the Riemann sphere.

The Chordal (Spherical) Metric

The chordal metric (or spherical metric) defines a distance between two points on the Riemann sphere (and therefore between two complex numbers, including ∞).

If z and z’ are two finite complex numbers, the chordal distance is the Euclidean distance between their projections on the sphere:

$d(z, z’) = \begin{cases} d(Z, Z’), &z, z’ \ne \infty\\ d(Z, ∞) = \frac{2}{\sqrt{1+|z|²}}, &z’ = \infty \end{cases}$

$d(z, z’) = \begin{cases} \sqrt{(x_1-x_1’)²+(x_2-x_2’)²+(x_3-x_3’)²}, &z, z’ \ne \infty\\ \frac{2}{\sqrt{1+|z|²}}, &z’ = \infty \end{cases}$

Notice: The point at infinity ∞ on the Riemann sphere corresponds exactly to the north pole N = (0, 0, 1) of the unit sphere S. d(z, ∞) = $\sqrt{(x_1-0)^2+(y_1-0)^2+(z_1-1)^2}$

Plugging in the coordinates:

  1. $(x_1^2)+(x_2^2) = \frac{4(x^2+y^2)}{(1+|z|^2)^2} = \frac{4|z|^2}{(1+|z|^2)^2}$
  2. $z_1-1 = \frac{|z²|-1}{|z|²+1}-1 = \frac{|z²|-1-(|z|²+1)}{|z|²+1} = \frac{-2}{|z|²+1}$

Therefore, $d(z, ∞)^2 = (x_1-0)^2+(y_1-0)^2+(z_1-1)^2 = \frac{4|z|^2}{(1+|z|^2)^2} + \frac{4}{(1+|z|^2)^2} = \frac{4·(1+|z|^2)}{(1+|z|^2)^2} = \frac{4}{1+|z|^2}$

Taking the square root gives the previous formula: $d(Z, ∞) = \frac{2}{\sqrt{1+|z|²}}$

This correspondence along with the distance is called the stereographic projection. We define the operations: a + ∞ = ∞, a·∞ = ∞ (a ≠ 0), a/∞ = 0, a/0 = ∞ (a ≠ 0), a ∈ ℂ

Bitcoin donation

JustToThePoint Copyright © 2011 - 2025 Anawim. ALL RIGHTS RESERVED. Bilingual e-books, articles, and videos to help your child and your entire family succeed, develop a healthy lifestyle, and have a lot of fun. Social Issues, Join us.

This website uses cookies to improve your navigation experience.
By continuing, you are consenting to our use of cookies, in accordance with our Cookies Policy and Website Terms and Conditions of use.